[1]
F. Chen, X. Ji, S.P. Lau, Recent progress in group III-nitride nanostructures: From materials to applications, Materials Science and Engineering: R: Reports 142 (2020) 100578.
DOI: 10.1016/j.mser.2020.100578
Google Scholar
[2]
P. Avouris, Carbon Nanotube Electronics and Optoelectronics, MRS Bull. 29 (2004) 403-410.
DOI: 10.1557/mrs2004.123
Google Scholar
[3]
J.N. Quijada, T. Baldauf, S. Rai, A. Heinzig, A. Kumar, W.M. Weber, et al., A germanium nanowire reconfigurable transistor model for predictive technology evaluation, IEEE Transactions on Nanotechnology 21 (2022) 728-736.
DOI: 10.1109/tnano.2022.3221836
Google Scholar
[4]
R. Böckle, M. Sistani, K. Eysin, M.G. Bartmann, M.A. Luong, M.I. den Hertog, et al., Gate‐tunable negative differential resistance in next‐generation Ge Nanodevices and their performance metrics, Adv. Electron. Mater. 7 (2021) 2001178.
DOI: 10.1002/aelm.202001178
Google Scholar
[5]
A. Lale, A. Grappin, A. Lecestre, L. Mazenq, J. Launay, P. Temple-Boyer, Top-down integration of suspended N+/p/N+ silicon-nanowire-based ion-sensitive field effect transistors for pH analysis at the submicronic scale, Thin Solid Films 764 (2023) 139609.
DOI: 10.1016/j.tsf.2022.139609
Google Scholar
[6]
E. Baek, J. Son, K. Cho, S. Kim, Design and simulation of logic-in-memory inverter based on a silicon nanowire feedback field-effect transistor, Micromachines 13 (2022) 590.
DOI: 10.3390/mi13040590
Google Scholar
[7]
H. Xue, Y. Shao, J. Yoon, T. Lee, W. Lu, Temperature-dependent low-frequency noise analysis of ZnO nanowire field-effect transistors, IEEE Transactions on Electron Devices 68 (2021) 3532-3536.
DOI: 10.1109/ted.2021.3083244
Google Scholar
[8]
J. Yoon, F. Huang, K.H. Shin, J.I. Sohn, W.-K. Hong, Effects of applied voltages on the charge transport properties in a ZnO nanowire field effect transistor, Materials 13 (2020) 268.
DOI: 10.3390/ma13020268
Google Scholar
[9]
M.A. Khan, R. Debnath, A. Motayed, M.V. Rao, Back-gate GaN Nanowire-based FET device for enhancing gas selectivity at room temperature, Sensors 21 (2021) 624.
DOI: 10.3390/s21020624
Google Scholar
[10]
M.A. Yildirim, K. Teker, Transport characteristics of gallium nitride Nanowire field-effect transistor (GAN-NWFET) for High Temperature Electronics, Nano 16 (2021) 2150021.
DOI: 10.1142/s1793292021500211
Google Scholar
[11]
Q. Li, C. Yang, L. Xu, S. Liu, S. Fang, L. Xu, et al., Symmetric and excellent scaling behavior in ultrathin n‐ and p‐type gate‐all‐around InAs nanowire transistors, Adv. Funct. Mater. 33 (2023) 2214653.
DOI: 10.1002/adfm.202214653
Google Scholar
[12]
R. Shen, Y. Jiang, X. Li, J. Tian, S. Li, T. Li, et al., Artificial synapse based on an InAs nanowire field-effect transistor with ferroelectric polymer P(VDF-TrFE) passivation, ACS Applied Electronic Materials 4 (2022) 5008-5016.
DOI: 10.1021/acsaelm.2c01005
Google Scholar
[13]
M. C. Benjamin, C. Wang, R. F. Davis, R. J. Nemanich, Observation of a negative electron affinity for heteroepitaxial AlN on α(6H)‐SiC(0001), Appl. Phys. Lett. 64 (1994) 3288-3290.
DOI: 10.1063/1.111312
Google Scholar
[14]
X.-H. Zha, X. Ma, J.-T. Luo, C. Fu, Enhanced piezoelectric response of AlN via alloying of transitional metals, and influence of type and distribution of transition metals, Nano Energy 111 (2023) 108390.
DOI: 10.1016/j.nanoen.2023.108390
Google Scholar
[15]
W. Zheng, F. Huang, R. Zheng, H. Wu, Low-Dimensional Structure Vacuum-Ultraviolet-Sensitive (λ < 200 nm) Photodetector with Fast-Response Speed Based on High-Quality AlN Micro/Nanowire, Adv. Mater. 27 (2015) 3921-3927.
DOI: 10.1002/adma.201500268
Google Scholar
[16]
N. Li, C.P. Ho, S. Zhu, Y.H. Fu, Y. Zhu, L.Y.T. Lee, Aluminium nitride integrated photonics: a review, Nanophotonics 10 (2021) 2347-2387.
DOI: 10.1515/nanoph-2021-0130
Google Scholar
[17]
Y.B. Ozdemir, K. Teker, Self-powered high-performance flexible aluminum nitride nanowire deep ultraviolet photodetector, Appl. Phys. B 128 (2022) 171.
DOI: 10.1007/s00340-022-07893-w
Google Scholar
[18]
K. Teker, Low-Power Operating Aluminum Nitride Nanowire-Film Ultraviolet Photodetector, J. Nano Res. 74 (2022) 25-34.
DOI: 10.4028/p-156hhl
Google Scholar
[19]
S. J. Wind, J. Appenzeller, R. Martel, V. Derycke, P. Avouris, Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes, Appl. Phys. Lett. 80 (2002) 3817-3819.
DOI: 10.1063/1.1480877
Google Scholar
[20]
A. Uzun, K. Teker, Silicon carbide nanowire field effect transistors with high on/off current ratio, Microelectron. Eng. 205 (2019) 59-62.
DOI: 10.1016/j.mee.2018.12.009
Google Scholar
[21]
Y.B. Tang, X.H. Bo, J. Xu, Y.L. Cao, Z.H. Chen, H.S. Song, C.P. Liu, T.F. Hung, W.J. Zhang, H.M. Cheng, I. Bello, S.T. Lee, C. S. Lee, Tunable p-Type Conductivity and Transport Properties of AlN Nanowires via Mg Doping, ACS Nano 5 (2011) 3591-3598.
DOI: 10.1021/nn200963k
Google Scholar
[22]
Y. Kai, M. Yoshimura, Y. Mori, T. Sasaki, Synthesis of Low-Resistivity Aluminum Nitride Films Using Pulsed Laser Deposition, Jpn. J. Appl. Phys. 42 (2003) L229-L231.
DOI: 10.1143/jjap.42.l229
Google Scholar
[23]
R.A. Youngman, J.H. Harris, Luminescence Studies of Oxygen-Related Defects In Aluminum Nitride, J. Am. Ceram. Soc. 73 (1990) 3238-3246.
DOI: 10.1111/j.1151-2916.1990.tb06444.x
Google Scholar
[24]
K. Teker, Aluminium nitride nanowire array films for nanomanufacturing applications, Mater. Sci. Technol. 31 (2015) 1832-1836.
DOI: 10.1179/1743284715y.0000000027
Google Scholar
[25]
J. Zheng, Y. Yang, B. Yu, X. Song, X. Li, [0001] Oriented Aluminum Nitride One-Dimensional Nanostructures: Synthesis, Structure Evolution, and Electrical Properties, ACS Nano 2 (2008) 134-142.
DOI: 10.1021/nn700363t
Google Scholar