[1]
W. Wang, L. Sun, Q, Li, D. Lv, Z. Y. Gao, T. Huang, Magnetic and thermodynamic behaviors of a diluted Ising nanographene monolayer under the longitudinal magnetic field, J. Magn. Magn. Mater.527 (2021) 167692.
DOI: 10.1016/j.jmmm.2020.167692
Google Scholar
[2]
Q. Li, R.D. Li, W. Wang, R.Z. Geng, H. Huang, S.J. Zheng, Magnetic and thermodynamic characteristics of a rectangle Ising nanoribbon, Physica A, 555 (2020) 124741.
DOI: 10.1016/j.physa.2020.124741
Google Scholar
[3]
B. Nmaila, K. Htoutou, R. Ahllaamara, L. B. Drissi, Thermodynamic and magnetic properties of a mixed spins (3/2, 5/2) Ising nanowire with hexagonal structure: Monte Carlo simulation, India. J. Phys, 97 (2023) 429.
DOI: 10.1007/s12648-022-02393-1
Google Scholar
[4]
K. McNamara, S.A.M. ,Tofail Nanoparticles in biomedical applications, Adv. Phys. X 2 (2017) 54.
Google Scholar
[5]
L. Rosa, J. Blackledge, A. Boretti, Nano-magnetic resonance imaging (Nano-MRI) gives personalized medicine a new perspective, Biomedicines (2017) 5, 7.
DOI: 10.3390/biomedicines5010007
Google Scholar
[6]
H.P.D. Shieh, M.H. Kryder, Magneto‐optic recording materials with direct overwrite capability , Appl. Phys. Lett. 49 (1986) 473-474.
DOI: 10.1063/1.97120
Google Scholar
[7]
Y. Song, X.M. Li, C. Mackin, X. Zhang, W.J. Fang, T. Palacios, H.W. Zhu, J. Kong, Role of interfacial oxide in high-efficiency graphene–silicon Schottky barrier solar cells , Nano Lett. 15 (2015) 2104-2110.
DOI: 10.1021/nl505011f
Google Scholar
[8]
L. Xi, Z. Wang, Y. Zuo and X. Shi, the enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction, Nanotechnology, 22(2011) 045707.
DOI: 10.1088/0957-4484/22/4/045707
Google Scholar
[9]
A. Lopez-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogu´es, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep, 553 (2015) 1-32.
DOI: 10.1016/j.physrep.2014.09.007
Google Scholar
[10]
P. Reiss, M. Protiere, L. Li, Core/shell semiconductor nanocrystals Small, 5, 154(2009) 154-168
DOI: 10.1002/smll.200800841
Google Scholar
[11]
S.Bedanta, A.Barman, W. Kleemann, O. Petracic, T. Seki, Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications ,J. Nanomater. (2013), (2013)169-169.
DOI: 10.1155/2013/952540
Google Scholar
[12]
R. M. Francisco, J. P. Santos, Magnetic properties of the Ashkin–Teller model on a hexagonal nanotube, Phys. Lett. A. 383(2019) 1092-1098.
DOI: 10.1016/j.physleta.2019.01.001
Google Scholar
[13]
N. Hachem, I. A. Badrour, A. El Antari, A. Lafhal, M. Madani, M. El Bouziani, Phase diagrams of a mixed-spin hexagonal Ising nanotube with core-shell structure, Chin. J. Phys.71 (2021) 12-21.
DOI: 10.1016/j.cjph.2020.07.001
Google Scholar
[14]
M. Gharaibeh, S. Alqaiem, A. Obeidat, A. Al-Qawasmeh, S. Abedrabbo, M. H. Badarneh, Magnetic properties of the ferrimagnetic triangular nanotube with core–shell structure: A Monte Carlo study, Phys. A: Stat. Mech. Appl. 584 (2021) 126394.
DOI: 10.1016/j.physa.2021.126394
Google Scholar
[15]
A. Kadiri, G. D. Ngantso, M. A. Tamerd, R. Kumar, M. Arejdal, A. Abbassi, Y. El Amraoui, H. Ez-Zahraouy, A. Benyoussef, Effects of size for an assembly of core-shell nanoparticles with the cubic structure: Monte Carlo simulations, Solid. State. Commun. 352 (2022) 114816.
DOI: 10.1016/j.ssc.2022.114816
Google Scholar
[16]
B. Deviren, Nonequilibrium magnetic properties of the mixed spin (1/2, 1) Ising nanowire with core-shell structure, Phys. E. 120 (2020) 114052.
DOI: 10.1016/j.physe.2020.114052
Google Scholar
[17]
B. Boyarbay Kantar, M. Ertas, Dynamic magnetic and hysteretic properties of the different type core/shell nanostructures: the effect of geometry of wire shape, Philos. Mag. 98 (2018) 2734-2748.
DOI: 10.1080/14786435.2018.1505055
Google Scholar
[18]
E. M. Jalal, A. Lafhal, H. Saadi, A. Hasnaoui, M. Madani, and M. El Bouziani, Magnetic behavior of spin chain with hexagonal shell and negative core-shell exchange coupling: Monte Carlo simulation and mean field approach, SPIN. 13 (2023) 2340005.
DOI: 10.1142/s2010324723400052
Google Scholar
[19]
Z. Elmaddahi, M. El Hafidi, Magnetic properties of a three-walled mixed-spin nanotube, J. Magn. Magn. Mater. 523 (2021) 167565.
DOI: 10.1016/j.jmmm.2020.167565
Google Scholar
[20]
O. Canko, A. Erdinc, F. Ta¸skın, A. F. Yıldırım, Some characteristic behavior of mixed spin-1/2 and spin-1 Ising nanotube, J. Magn. Magn. Mater. 324 (2012) 508-513.
DOI: 10.1016/j.jmmm.2011.08.046
Google Scholar
[21]
N. S¸arlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube, Physica. B: Condens. Matter. 411 (2013) 12-25.
DOI: 10.1016/j.physb.2012.08.046
Google Scholar
[22]
R. G. B. Mendes, F. S. Barreto, J. P. Santos, Thermodynamic states of the mixed spin 1/2 and spin 1 hexagonal nanotube system obtained from a eighteen-site cluster within an improved mean field approximation, Phys. A. 505 (2018) 1186-1195.
DOI: 10.1016/j.physa.2018.03.094
Google Scholar
[23]
Y. Liu, W. Wang, D. Lv, E. R. Zhao, T. Huang, Z. Y. Wang, Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure, Physica. B: Condens. Matter. 541 (2018) 79 -88.
DOI: 10.1016/j.physb.2018.04.042
Google Scholar
[24]
R. Masrour, A. Jabar, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin Ising nanotube with double (surface and core) walls, EPL. 128 (2020) 46002.
DOI: 10.1209/0295-5075/128/46002
Google Scholar
[25]
W. Jiang, X. X. Li, A. B. Guo, H. Y. Guan, Z. Wang, K. Wang, Magnetic properties and thermodynamics in a metallic nanotube, J. Magn. Magn. Mater. 355 (2014) 309-318.
DOI: 10.1016/j.jmmm.2013.12.034
Google Scholar
[26]
B. Deviren, M. Batı, M. Keskin, The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system, Phys. Scr. 79 (2009) 065006.
DOI: 10.1088/0031-8949/79/06/065006
Google Scholar
[27]
M. Batı, Mixed Spin (1, 5/2) Ising Ferromagnetic Blume-Capel Model Under Time-Dependent Sinusoidal Magnetic Field: an Effective-Field Theory Analysis, J. Supercond. Nov. Magn. 31 (2018) 821-831.
DOI: 10.1007/s10948-017-4251-x
Google Scholar
[28]
F.T. Ibrahim, Mean-field Solution of the mixed spin-1 and spin-5/2 Ising system with different single-ion anisotropies, Baghdad Sci. J (2009). 4, 6.
DOI: 10.21123/bsj.6.4.784-789
Google Scholar
[29]
H.K. Mohamad, Compensation behaviors of a ferrimagnetic Blume-Capel Ising nanowire system with core/shell structure, Solid. State. Commun. 312 (2020) 113894.
DOI: 10.1016/j.ssc.2020.113894
Google Scholar
[30]
A. Yigit, E. Albayrak, Random crystal field effects on the integer and half-integer mixed-spin system, Superlattice. Microst.117 (2018) 65-71.
DOI: 10.1016/j.spmi.2018.02.037
Google Scholar
[31]
A. Yigit, E. Albayrak, Critical properties of mixed spin-1 and spin-5/2 with equal and unequal crystal fields, Chin. Phys. B. 21 (2012) 020511.
DOI: 10.1088/1674-1056/21/2/020511
Google Scholar
[32]
J. Kple, R. A. Yessoufou, F. Hontinfinde, The mixed spin-1 and spin-5/2 BEG model in a staggered magnetic field, Afr. Rev. Phys. 7 (2012) 319.
Google Scholar
[33]
R. A. Yessoufou, S. Bekhechi, F. Hontinfinde, Numerical study of the mixed spin-1 and spin-5/2 Ising ferrimagnetic system, Eur. Phys. J. B. 81 (2011) 137-146.
DOI: 10.1140/epjb/e2011-10825-7
Google Scholar
[34]
A. Ozkılı¸c, U. Temizer, Dynamic phase transitions and compensation temperatures in the mixed spin-1 and spin-5/2 Ising system on alternate layers of a hexagonal lattice, J. Magn. Magn. Mater, 330 (2013) 55-65.
DOI: 10.1016/j.jmmm.2012.10.029
Google Scholar
[35]
R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of the Ising system on alternate layers of a hexagonal lattice, Phys. A: Stat., 491 (2018) 1028-1039.
DOI: 10.1016/j.physa.2017.09.083
Google Scholar
[36]
H. Falk, Inequalities of JW Gibbs, Am. J. Phys. 38 (1970) 858-869.
Google Scholar
[37]
N. Fukushima, A. Honecker, S. Wessel, W. Brenig, Thermodynamic properties of ferromagn-etic mixed-spin chain systems, J. Phys. Rev. B, 69 (2004) 174430.
DOI: 10.1103/physrevb.69.174430
Google Scholar
[38]
R. Feyerherm, C. Mathonière, O. Kahn, Magnetic anisotropy and metamagnetic behaviour of the bimetallic chain MnNi (NO2)4 (en)2 (en= ethylenediamine), J. Phys. Condens. Matter, 13 (2001), 2639.
DOI: 10.1088/0953-8984/13/11/319
Google Scholar
[39]
W. Wang, Y. Liu, Z. Y. Gao, X. R. Zhao, Y. Yang, S. Yang, Compensation behaviors and magnetic properties in a cylindrical ferrimagnetic nanotube with core-shell structure: A Monte Carlo study, Phys. E. 101 (2018) 110-124.
DOI: 10.1016/j.physe.2018.03.025
Google Scholar
[40]
B. Nmaila, A. Kadiri, A. Arbaoui, L. B. Drissi, R. A. Laamara, K. Htoutou, Phase diagrams and hysteresis loops of a ferrimagnetic mixed spin-(3/2, 5/2) hexagonal Ising nanotube with core–shell structure, Chin. J. Phys. 79 (2022) 362-373.
DOI: 10.1016/j.cjph.2022.07.019
Google Scholar
[41]
D. Lv, W. Jiang, Y. Ma, Z. Gao, F. Wang, Magnetic and thermodynamic properties of a cylindrical ferrimagnetic Ising nanowire with core/shell structure,Phys. E. 106 (2019) 101-113.
DOI: 10.1016/j.physe.2018.08.021
Google Scholar
[42]
Y. Kocakaplan, M. Keskin, Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system, J. Appl. Phys. 116 (2014) 093904.
DOI: 10.1063/1.4894509
Google Scholar
[43]
N. Hachem, M. El Bouziani, Magnetic Properties of a Cylindrical Nanotube with Spin-1/2 Core and Spin-3/2 Shell, J. Spin. 12 (2022) 2250025
DOI: 10.1142/s2010324722500254
Google Scholar
[44]
H. Kerrai, N. Zaim, M. Kerouad, A. Zaim, Monte Carlo study of the phase diagrams and hysteresis behaviors of a ternary mixed spin (1, 1/2, 3/2) Ising nanowire with ferromagnetic core/ferrimagnetic shell structure, Phys. B: Conde. Matt. 649 (2023) 414448.
DOI: 10.1016/j.physb.2022.414448
Google Scholar
[45]
D. Lv, F. Wang, R. J. Liu, Q. Xue, S. X. Li, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure,J. Alloys Compd. 701 (2017) 935-949.
DOI: 10.1016/j.jallcom.2017.01.099
Google Scholar
[46]
B. Boughazi, M. Boughrara, M. Kerouad, Phase diagrams and magnetic properties of ferrimagnetic mixed spin-1/2 and spin-3/2 Ising nanowire, Phys. A. 465 (2017) 628-635.
DOI: 10.1016/j.jmmm.2013.10.052
Google Scholar
[47]
W. Wang, J. L. Bi, R. J. Liu, X. Chen, J. P. Liu, Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire, Superlattice. Microst. 98 (2016) 433-447.
DOI: 10.1016/j.spmi.2016.09.013
Google Scholar
[48]
D. Lv, Y. Yang, W. Jiang, F. Wang, Z. Y. Gao, M. Tian, Magnetic and thermodynamic properties of a ternary metal nanoisland: A Monte Carlo study, Phys. A. 514 (2019) 319-335.
DOI: 10.1016/j.physa.2018.09.089
Google Scholar
[49]
E. Kantar, M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach, J. Magn. Magn. Mater.349 (2014) 165-172.
DOI: 10.1016/j.jmmm.2013.08.034
Google Scholar
[50]
E. Kantar, Y. Kocakaplan, Hexagonal type Ising nanowire with core/shell structure: The phase diagrams and compensation behaviors, Solid. State. Commun. 177 (2014) 1-6.
DOI: 10.1016/j.ssc.2013.09.026
Google Scholar
[51]
A. Feraoun, A. Zaim, M. Kerouad, Monte Carlo study of a mixed spin (1, 3/2) ferrimagnetic nanowire with core/shell morphology, Physica. B, Condens. Matter, 445 (2014)74-80.
DOI: 10.1016/j.physb.2014.03.071
Google Scholar
[52]
O. Canko, A. Erdinc, F. Ta¸skın, A. F. Yıldırım, Some characteristic behavior of mixed spin-1/2 and spin-1 Ising nanotube, J. Magn. Magn. Mater. 324(2012) 508-513.
DOI: 10.1016/j.jmmm.2011.08.046
Google Scholar
[53]
Y. Kocakaplan, M. Ertas, Magnetic properties of the spin-3/2 Blume-Capel model on a hexagonal Ising nanowire, J. Exp. Theo. Phys. 121(2015) 606-615.
DOI: 10.1134/s1063776115100118
Google Scholar
[54]
J. P. Santos, A generalization of mean field theory in a cluster with many sites on the Ising model from the Bogoliubov inequality: hexagonal nanowire and nanotube, Braz. J. Phys. 47 (2017) 122-130.
DOI: 10.1007/s13538-016-0478-4
Google Scholar
[55]
J.Y. Chen, N. Ahmad, W. Shi, W.P. Zhou, X.F. Han, Synthesis and magnetic characterization of Co-NiO-Ni core-shell nanotube arrays, J. Appl. Phys. 110 (2011) 073912.
DOI: 10.1063/1.3646491
Google Scholar
[56]
K. G. Rewatkar, Magnetic nanoparticles: synthesis and properties, Solid State Phenom. (2016) (Vol. 241, pp.177-201).
Google Scholar
[57]
I. Tereshina, E. Tereshina, G. Burkhanov, S. Dobatkin, Magnetic nanoparticles: synthesis and properties. Mater. Sci. Forum, 667 (2011) 1065.
DOI: 10.4028/www.scientific.net/msf.667-669.1065
Google Scholar
[58]
S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, F. Dujardin, J. J. Miguel, Hysteresis loops and susceptibility of a transverse Ising nanowire, J. Magn. Magn. Mater. 324 (2012) 2434-2441.
DOI: 10.1016/j.jmmm.2012.02.104
Google Scholar
[59]
N. Lupu, M. Lostun, H. Chiriac, Surface magnetization processes in soft magnetic nanowires, J. Appl. Phys. 107 (2010) 09E315.
DOI: 10.1063/1.3360209
Google Scholar
[60]
Y. Liu, W. Wang, D. Lv, X. R. Zhao, T. Huang, Z. Y. Wang, Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure, Physica. B, Condens. Matter. 541 (2018) 79-88.
DOI: 10.1016/j.physb.2018.04.042
Google Scholar
[61]
A. Zaim, M. Kerouad, M. Boughrara, Effects of the random field on the magnetic behavior of nanowires with core/shell morphology, J. Magn. Magn. Mater. 331 (2013) 37-44.
DOI: 10.1016/j.jmmm.2012.11.018
Google Scholar
[62]
A. Feraoun, S. Amraoui, M. Kerouad, Magnetic properties of a mixed spin-(5/2, 2) Ising core/shell nanoparticle: Monte Carlo study, Phys. A. 526 (2019) 120924.
DOI: 10.1016/j.physa.2019.04.160
Google Scholar
[63]
A. Lafhal, E. M. Jalal, A. Hasnaoui, H. Saadi, N. Hachem, M. Madani, M. El Bouziani, Magnetic Behavior of Ising Nanowire with Mixed Integer Spins: A Monte Carlo Study, J. Nano Res. 77 (2023)155.
DOI: 10.4028/p-m5cw02
Google Scholar
[64]
Z. Peng, W. Wang, D. Lv, R. J. Liu, Q. Li, Magnetic properties of a cubic nanoisland in the longitudinal magnetic field: A Monte Carlo study, Superlattice. Microst. 109 (2017) 675-686.
DOI: 10.1016/j.spmi.2017.05.055
Google Scholar
[65]
N. F. Zounmenou, S. I. V. Hontinfinde, J. Kple, M. Karimou, F. Hontinfinde, Magnetic properties of a spin-7/2 and spin-5/2 core/shell nanowire: a Monte Carlo study, Appl. Phys. A.126 (2020) 1-13.
DOI: 10.1007/s00339-020-03856-0
Google Scholar
[66]
Z. Y. Gao, W. Wang, L. Sun, L. M. Yang, B. Y. Ma, P. S. Li, Dynamic magnetic properties of borophene nanoribbons with core-shell structure: Monte Carlo study, J. Magn. Magn. Mater. 548 (2022) 168967.
DOI: 10.1016/j.jmmm.2021.168967
Google Scholar