Mean Field Study of a Cylindrical Ferrimagnetic Nanotube with Different Anisotropies

Article Preview

Abstract:

In this paper, the ferrimagnetic mixed spins (1, 5/2) Blume-Capel model is proposed to investigate the phase diagrams and hysteresis behaviors of a magnetic cylindrical nanotube with a core-shell structure using the mean-field approximation based on the Bogoliubov inequality for the Gibbs free energy. The core sites are occupied by σ= ±1, 0 spins, whereas the shell sites are filled by S= ±5/2, ±3/2, ±1/2 spins. The effects of exchange couplings (Jin, JS) and single-ion anisotropies (DC, DS) on core, shell, and total magnetizations are investigated, as well as hysteresis behaviors. The entropy, free energy, and specific heat are analyzed to establish the stability of the solutions. The presentation and discussion of phase diagrams is detailed. The system shows a first-order and second-order phase transitions, as well as tricritical and critical end- points. In addition, the system shows compensation and reentrant behaviors. Various multiple hysteresis loop behaviors are seen according on the Hamiltonian parameters, such as the presence of triple, quintuple, and septuple hysteresis loops.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

85-103

Citation:

Online since:

December 2023

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2023 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W. Wang, L. Sun, Q, Li, D. Lv, Z. Y. Gao, T. Huang, Magnetic and thermodynamic behaviors of a diluted Ising nanographene monolayer under the longitudinal magnetic field, J. Magn. Magn. Mater.527 (2021) 167692.

DOI: 10.1016/j.jmmm.2020.167692

Google Scholar

[2] Q. Li, R.D. Li, W. Wang, R.Z. Geng, H. Huang, S.J. Zheng, Magnetic and thermodynamic characteristics of a rectangle Ising nanoribbon, Physica A, 555 (2020) 124741.

DOI: 10.1016/j.physa.2020.124741

Google Scholar

[3] B. Nmaila, K. Htoutou, R. Ahllaamara, L. B. Drissi, Thermodynamic and magnetic properties of a mixed spins (3/2, 5/2) Ising nanowire with hexagonal structure: Monte Carlo simulation, India. J. Phys, 97 (2023) 429.

DOI: 10.1007/s12648-022-02393-1

Google Scholar

[4] K. McNamara, S.A.M. ,Tofail Nanoparticles in biomedical applications, Adv. Phys. X 2 (2017) 54.

Google Scholar

[5] L. Rosa, J. Blackledge, A. Boretti, Nano-magnetic resonance imaging (Nano-MRI) gives personalized medicine a new perspective, Biomedicines (2017) 5, 7.

DOI: 10.3390/biomedicines5010007

Google Scholar

[6] H.P.D. Shieh, M.H. Kryder, Magneto‐optic recording materials with direct overwrite capability , Appl. Phys. Lett. 49 (1986) 473-474.

DOI: 10.1063/1.97120

Google Scholar

[7] Y. Song, X.M. Li, C. Mackin, X. Zhang, W.J. Fang, T. Palacios, H.W. Zhu, J. Kong, Role of interfacial oxide in high-efficiency graphene–silicon Schottky barrier solar cells , Nano Lett. 15 (2015) 2104-2110.

DOI: 10.1021/nl505011f

Google Scholar

[8] L. Xi, Z. Wang, Y. Zuo and X. Shi, the enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction, Nanotechnology, 22(2011) 045707.

DOI: 10.1088/0957-4484/22/4/045707

Google Scholar

[9] A. Lopez-Ortega, M. Estrader, G. Salazar-Alvarez, A.G. Roca, J. Nogu´es, Applications of exchange coupled bi-magnetic hard/soft and soft/hard magnetic core/shell nanoparticles, Phys. Rep, 553 (2015) 1-32.

DOI: 10.1016/j.physrep.2014.09.007

Google Scholar

[10] P. Reiss, M. Protiere, L. Li, Core/shell semiconductor nanocrystals Small, 5, 154(2009) 154-168

DOI: 10.1002/smll.200800841

Google Scholar

[11] S.Bedanta, A.Barman, W. Kleemann, O. Petracic, T. Seki, Magnetic Nanoparticles: A Subject for Both Fundamental Research and Applications ,J. Nanomater. (2013), (2013)169-169.

DOI: 10.1155/2013/952540

Google Scholar

[12] R. M. Francisco, J. P. Santos, Magnetic properties of the Ashkin–Teller model on a hexagonal nanotube, Phys. Lett. A. 383(2019) 1092-1098.

DOI: 10.1016/j.physleta.2019.01.001

Google Scholar

[13] N. Hachem, I. A. Badrour, A. El Antari, A. Lafhal, M. Madani, M. El Bouziani, Phase diagrams of a mixed-spin hexagonal Ising nanotube with core-shell structure, Chin. J. Phys.71 (2021) 12-21.

DOI: 10.1016/j.cjph.2020.07.001

Google Scholar

[14] M. Gharaibeh, S. Alqaiem, A. Obeidat, A. Al-Qawasmeh, S. Abedrabbo, M. H. Badarneh, Magnetic properties of the ferrimagnetic triangular nanotube with core–shell structure: A Monte Carlo study, Phys. A: Stat. Mech. Appl. 584 (2021) 126394.

DOI: 10.1016/j.physa.2021.126394

Google Scholar

[15] A. Kadiri, G. D. Ngantso, M. A. Tamerd, R. Kumar, M. Arejdal, A. Abbassi, Y. El Amraoui, H. Ez-Zahraouy, A. Benyoussef, Effects of size for an assembly of core-shell nanoparticles with the cubic structure: Monte Carlo simulations, Solid. State. Commun. 352 (2022) 114816.

DOI: 10.1016/j.ssc.2022.114816

Google Scholar

[16] B. Deviren, Nonequilibrium magnetic properties of the mixed spin (1/2, 1) Ising nanowire with core-shell structure, Phys. E. 120 (2020) 114052.

DOI: 10.1016/j.physe.2020.114052

Google Scholar

[17] B. Boyarbay Kantar, M. Ertas, Dynamic magnetic and hysteretic properties of the different type core/shell nanostructures: the effect of geometry of wire shape, Philos. Mag. 98 (2018) 2734-2748.

DOI: 10.1080/14786435.2018.1505055

Google Scholar

[18] E. M. Jalal, A. Lafhal, H. Saadi, A. Hasnaoui, M. Madani, and M. El Bouziani, Magnetic behavior of spin chain with hexagonal shell and negative core-shell exchange coupling: Monte Carlo simulation and mean field approach, SPIN. 13 (2023) 2340005.

DOI: 10.1142/s2010324723400052

Google Scholar

[19] Z. Elmaddahi, M. El Hafidi, Magnetic properties of a three-walled mixed-spin nanotube, J. Magn. Magn. Mater. 523 (2021) 167565.

DOI: 10.1016/j.jmmm.2020.167565

Google Scholar

[20] O. Canko, A. Erdinc, F. Ta¸skın, A. F. Yıldırım, Some characteristic behavior of mixed spin-1/2 and spin-1 Ising nanotube, J. Magn. Magn. Mater. 324 (2012) 508-513.

DOI: 10.1016/j.jmmm.2011.08.046

Google Scholar

[21] N. S¸arlı, Band structure of the susceptibility, internal energy and specific heat in a mixed core/shell Ising nanotube, Physica. B: Condens. Matter. 411 (2013) 12-25.

DOI: 10.1016/j.physb.2012.08.046

Google Scholar

[22] R. G. B. Mendes, F. S. Barreto, J. P. Santos, Thermodynamic states of the mixed spin 1/2 and spin 1 hexagonal nanotube system obtained from a eighteen-site cluster within an improved mean field approximation, Phys. A. 505 (2018) 1186-1195.

DOI: 10.1016/j.physa.2018.03.094

Google Scholar

[23] Y. Liu, W. Wang, D. Lv, E. R. Zhao, T. Huang, Z. Y. Wang, Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure, Physica. B: Condens. Matter. 541 (2018) 79 -88.

DOI: 10.1016/j.physb.2018.04.042

Google Scholar

[24] R. Masrour, A. Jabar, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin Ising nanotube with double (surface and core) walls, EPL. 128 (2020) 46002.

DOI: 10.1209/0295-5075/128/46002

Google Scholar

[25] W. Jiang, X. X. Li, A. B. Guo, H. Y. Guan, Z. Wang, K. Wang, Magnetic properties and thermodynamics in a metallic nanotube, J. Magn. Magn. Mater. 355 (2014) 309-318.

DOI: 10.1016/j.jmmm.2013.12.034

Google Scholar

[26] B. Deviren, M. Batı, M. Keskin, The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system, Phys. Scr. 79 (2009) 065006.

DOI: 10.1088/0031-8949/79/06/065006

Google Scholar

[27] M. Batı, Mixed Spin (1, 5/2) Ising Ferromagnetic Blume-Capel Model Under Time-Dependent Sinusoidal Magnetic Field: an Effective-Field Theory Analysis, J. Supercond. Nov. Magn. 31 (2018) 821-831.

DOI: 10.1007/s10948-017-4251-x

Google Scholar

[28] F.T. Ibrahim, Mean-field Solution of the mixed spin-1 and spin-5/2 Ising system with different single-ion anisotropies, Baghdad Sci. J (2009). 4, 6.

DOI: 10.21123/bsj.6.4.784-789

Google Scholar

[29] H.K. Mohamad, Compensation behaviors of a ferrimagnetic Blume-Capel Ising nanowire system with core/shell structure, Solid. State. Commun. 312 (2020) 113894.

DOI: 10.1016/j.ssc.2020.113894

Google Scholar

[30] A. Yigit, E. Albayrak, Random crystal field effects on the integer and half-integer mixed-spin system, Superlattice. Microst.117 (2018) 65-71.

DOI: 10.1016/j.spmi.2018.02.037

Google Scholar

[31] A. Yigit, E. Albayrak, Critical properties of mixed spin-1 and spin-5/2 with equal and unequal crystal fields, Chin. Phys. B. 21 (2012) 020511.

DOI: 10.1088/1674-1056/21/2/020511

Google Scholar

[32] J. Kple, R. A. Yessoufou, F. Hontinfinde, The mixed spin-1 and spin-5/2 BEG model in a staggered magnetic field, Afr. Rev. Phys. 7 (2012) 319.

Google Scholar

[33] R. A. Yessoufou, S. Bekhechi, F. Hontinfinde, Numerical study of the mixed spin-1 and spin-5/2 Ising ferrimagnetic system, Eur. Phys. J. B. 81 (2011) 137-146.

DOI: 10.1140/epjb/e2011-10825-7

Google Scholar

[34] A. Ozkılı¸c, U. Temizer, Dynamic phase transitions and compensation temperatures in the mixed spin-1 and spin-5/2 Ising system on alternate layers of a hexagonal lattice, J. Magn. Magn. Mater, 330 (2013) 55-65.

DOI: 10.1016/j.jmmm.2012.10.029

Google Scholar

[35] R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, Magnetic properties of the Ising system on alternate layers of a hexagonal lattice, Phys. A: Stat., 491 (2018) 1028-1039.

DOI: 10.1016/j.physa.2017.09.083

Google Scholar

[36] H. Falk, Inequalities of JW Gibbs, Am. J. Phys. 38 (1970) 858-869.

Google Scholar

[37] N. Fukushima, A. Honecker, S. Wessel, W. Brenig, Thermodynamic properties of ferromagn-etic mixed-spin chain systems, J. Phys. Rev. B, 69 (2004) 174430.

DOI: 10.1103/physrevb.69.174430

Google Scholar

[38] R. Feyerherm, C. Mathonière, O. Kahn, Magnetic anisotropy and metamagnetic behaviour of the bimetallic chain MnNi (NO2)4 (en)2 (en= ethylenediamine), J. Phys. Condens. Matter, 13 (2001), 2639.

DOI: 10.1088/0953-8984/13/11/319

Google Scholar

[39] W. Wang, Y. Liu, Z. Y. Gao, X. R. Zhao, Y. Yang, S. Yang, Compensation behaviors and magnetic properties in a cylindrical ferrimagnetic nanotube with core-shell structure: A Monte Carlo study, Phys. E. 101 (2018) 110-124.

DOI: 10.1016/j.physe.2018.03.025

Google Scholar

[40] B. Nmaila, A. Kadiri, A. Arbaoui, L. B. Drissi, R. A. Laamara, K. Htoutou, Phase diagrams and hysteresis loops of a ferrimagnetic mixed spin-(3/2, 5/2) hexagonal Ising nanotube with core–shell structure, Chin. J. Phys. 79 (2022) 362-373.

DOI: 10.1016/j.cjph.2022.07.019

Google Scholar

[41] D. Lv, W. Jiang, Y. Ma, Z. Gao, F. Wang, Magnetic and thermodynamic properties of a cylindrical ferrimagnetic Ising nanowire with core/shell structure,Phys. E. 106 (2019) 101-113.

DOI: 10.1016/j.physe.2018.08.021

Google Scholar

[42] Y. Kocakaplan, M. Keskin, Hysteresis and compensation behaviors of spin-3/2 cylindrical Ising nanotube system, J. Appl. Phys. 116 (2014) 093904.

DOI: 10.1063/1.4894509

Google Scholar

[43] N. Hachem, M. El Bouziani, Magnetic Properties of a Cylindrical Nanotube with Spin-1/2 Core and Spin-3/2 Shell, J. Spin. 12 (2022) 2250025

DOI: 10.1142/s2010324722500254

Google Scholar

[44] H. Kerrai, N. Zaim, M. Kerouad, A. Zaim, Monte Carlo study of the phase diagrams and hysteresis behaviors of a ternary mixed spin (1, 1/2, 3/2) Ising nanowire with ferromagnetic core/ferrimagnetic shell structure, Phys. B: Conde. Matt. 649 (2023) 414448.

DOI: 10.1016/j.physb.2022.414448

Google Scholar

[45] D. Lv, F. Wang, R. J. Liu, Q. Xue, S. X. Li, Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) Ising nanowire with hexagonal core-shell structure,J. Alloys Compd. 701 (2017) 935-949.

DOI: 10.1016/j.jallcom.2017.01.099

Google Scholar

[46] B. Boughazi, M. Boughrara, M. Kerouad, Phase diagrams and magnetic properties of ferrimagnetic mixed spin-1/2 and spin-3/2 Ising nanowire, Phys. A. 465 (2017) 628-635.

DOI: 10.1016/j.jmmm.2013.10.052

Google Scholar

[47] W. Wang, J. L. Bi, R. J. Liu, X. Chen, J. P. Liu, Effects of the single-ion anisotropy on magnetic and thermodynamic properties of a ferrimagnetic mixed-spin (1, 3/2) cylindrical Ising nanowire, Superlattice. Microst. 98 (2016) 433-447.

DOI: 10.1016/j.spmi.2016.09.013

Google Scholar

[48] D. Lv, Y. Yang, W. Jiang, F. Wang, Z. Y. Gao, M. Tian, Magnetic and thermodynamic properties of a ternary metal nanoisland: A Monte Carlo study, Phys. A. 514 (2019) 319-335.

DOI: 10.1016/j.physa.2018.09.089

Google Scholar

[49] E. Kantar, M. Keskin, Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach, J. Magn. Magn. Mater.349 (2014) 165-172.

DOI: 10.1016/j.jmmm.2013.08.034

Google Scholar

[50] E. Kantar, Y. Kocakaplan, Hexagonal type Ising nanowire with core/shell structure: The phase diagrams and compensation behaviors, Solid. State. Commun. 177 (2014) 1-6.

DOI: 10.1016/j.ssc.2013.09.026

Google Scholar

[51] A. Feraoun, A. Zaim, M. Kerouad, Monte Carlo study of a mixed spin (1, 3/2) ferrimagnetic nanowire with core/shell morphology, Physica. B, Condens. Matter, 445 (2014)74-80.

DOI: 10.1016/j.physb.2014.03.071

Google Scholar

[52] O. Canko, A. Erdinc, F. Ta¸skın, A. F. Yıldırım, Some characteristic behavior of mixed spin-1/2 and spin-1 Ising nanotube, J. Magn. Magn. Mater. 324(2012) 508-513.

DOI: 10.1016/j.jmmm.2011.08.046

Google Scholar

[53] Y. Kocakaplan, M. Ertas, Magnetic properties of the spin-3/2 Blume-Capel model on a hexagonal Ising nanowire, J. Exp. Theo. Phys. 121(2015) 606-615.

DOI: 10.1134/s1063776115100118

Google Scholar

[54] J. P. Santos, A generalization of mean field theory in a cluster with many sites on the Ising model from the Bogoliubov inequality: hexagonal nanowire and nanotube, Braz. J. Phys. 47 (2017) 122-130.

DOI: 10.1007/s13538-016-0478-4

Google Scholar

[55] J.Y. Chen, N. Ahmad, W. Shi, W.P. Zhou, X.F. Han, Synthesis and magnetic characterization of Co-NiO-Ni core-shell nanotube arrays, J. Appl. Phys. 110 (2011) 073912.

DOI: 10.1063/1.3646491

Google Scholar

[56] K. G. Rewatkar, Magnetic nanoparticles: synthesis and properties, Solid State Phenom. (2016) (Vol. 241, pp.177-201).

Google Scholar

[57] I. Tereshina, E. Tereshina, G. Burkhanov, S. Dobatkin, Magnetic nanoparticles: synthesis and properties. Mater. Sci. Forum, 667 (2011) 1065.

DOI: 10.4028/www.scientific.net/msf.667-669.1065

Google Scholar

[58] S. Bouhou, I. Essaoudi, A. Ainane, M. Saber, F. Dujardin, J. J. Miguel, Hysteresis loops and susceptibility of a transverse Ising nanowire, J. Magn. Magn. Mater. 324 (2012) 2434-2441.

DOI: 10.1016/j.jmmm.2012.02.104

Google Scholar

[59] N. Lupu, M. Lostun, H. Chiriac, Surface magnetization processes in soft magnetic nanowires, J. Appl. Phys. 107 (2010) 09E315.

DOI: 10.1063/1.3360209

Google Scholar

[60] Y. Liu, W. Wang, D. Lv, X. R. Zhao, T. Huang, Z. Y. Wang, Hysteresis behaviors in a ferrimagnetic Ising nanotube with hexagonal core-shell structure, Physica. B, Condens. Matter. 541 (2018) 79-88.

DOI: 10.1016/j.physb.2018.04.042

Google Scholar

[61] A. Zaim, M. Kerouad, M. Boughrara, Effects of the random field on the magnetic behavior of nanowires with core/shell morphology, J. Magn. Magn. Mater. 331 (2013) 37-44.

DOI: 10.1016/j.jmmm.2012.11.018

Google Scholar

[62] A. Feraoun, S. Amraoui, M. Kerouad, Magnetic properties of a mixed spin-(5/2, 2) Ising core/shell nanoparticle: Monte Carlo study, Phys. A. 526 (2019) 120924.

DOI: 10.1016/j.physa.2019.04.160

Google Scholar

[63] A. Lafhal, E. M. Jalal, A. Hasnaoui, H. Saadi, N. Hachem, M. Madani, M. El Bouziani, Magnetic Behavior of Ising Nanowire with Mixed Integer Spins: A Monte Carlo Study, J. Nano Res. 77 (2023)155.

DOI: 10.4028/p-m5cw02

Google Scholar

[64] Z. Peng, W. Wang, D. Lv, R. J. Liu, Q. Li, Magnetic properties of a cubic nanoisland in the longitudinal magnetic field: A Monte Carlo study, Superlattice. Microst. 109 (2017) 675-686.

DOI: 10.1016/j.spmi.2017.05.055

Google Scholar

[65] N. F. Zounmenou, S. I. V. Hontinfinde, J. Kple, M. Karimou, F. Hontinfinde, Magnetic properties of a spin-7/2 and spin-5/2 core/shell nanowire: a Monte Carlo study, Appl. Phys. A.126 (2020) 1-13.

DOI: 10.1007/s00339-020-03856-0

Google Scholar

[66] Z. Y. Gao, W. Wang, L. Sun, L. M. Yang, B. Y. Ma, P. S. Li, Dynamic magnetic properties of borophene nanoribbons with core-shell structure: Monte Carlo study, J. Magn. Magn. Mater. 548 (2022) 168967.

DOI: 10.1016/j.jmmm.2021.168967

Google Scholar