Synthesis and Characterization of the Microwave Dielectric Properties of a (1-x) Li3MgNbO5–(x) Sr3V2O8 Composite for Antenna Application

Article Preview

Abstract:

This study investigates the fabrication of a cylindrical dielectric resonator antenna (CDRA) using ceramic microwave dielectric composites as a resonator. The composites (1-x) Li3MgNbO5-(x) Sr3V2O8 (x=0.25-0.40) have been synthesized via the conventional solid-state reaction method, incorporating 1% B2O3 to lower the sintering temperature. The 0.70-0.30 composite exhibited optimal microwave dielectric properties with a dielectric constant (εr) of 19.20, a quality factor (Q x f) of 3738 GHz, and a temperature coefficient (τf)of -43 ppm/°C. These characteristics render the 0.70-0.30 composite suitable for CDRA applications. The experimentally obtained microwave dielectric parameters were used to simulate the CDRA design using the High-Frequency Structure Simulator design software. A single-feed cylindrical antenna has been fabricated using this composite material as a resonator with a radius × height of 5×6 mm2, mounted on an FR4 substrate measuring close to 25×25×1.6 mm3 and Cu strip as a feed line. The simulated and experimentally measured parameters, including S11, voltage standing wave ratio, and radiation pattern, demonstrated excellent agreement, validating the composite's efficacy for antenna design.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-42

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. J. Cava, "Dielectric materials for applications in microwave communications," J. Mater. Chem., vol. 11, no. 1, p.54–62, 2001.

DOI: 10.1039/b003681l

Google Scholar

[2] R. Ubic, G. Subodh, and M. T. Sebastian, "High Permittivity Materials," in Microwave Materials and Applications, First Ed.John Wiley & Sons, Ltd., 2017, p.149–202.

DOI: 10.1002/9781119208549.ch4

Google Scholar

[3] P. V. Bijumon, M. T. Sebastian, and P. Mohanan, "Experimental investigations and three-dimensional transmission line matrix simulation of Ca 5-x A x B 2 Ti O 12 (A=Mg, Zn, Ni, and Co; B=Nb and Ta) ceramic resonators," J. Appl. Phys., vol. 98, no. 12, 2005.

DOI: 10.1063/1.2149187

Google Scholar

[4] R. D. Richtmyer, "Dielectric resonators," J. Appl. Phys., vol. 10, no. 6, p.391–398, 1939.

DOI: 10.1063/1.1707320

Google Scholar

[5] R. D. Raytheon, "A new low-loss high-K temperature- compensated dielectric for schottky-gate bulk effect digital," Proc. IEEE, vol. 59, no. 11, p.1628–1629, 1971.

DOI: 10.1109/PROC.1971.8508

Google Scholar

[6] J. K. Plourde, D. F. Linn, H. M. O'Bryan, and J. Thomson, "Ba2Ti9O20 as a Microwave Dielectric Resonator," J. Am. Ceram. Soc., vol. 58, no. 9–10, p.418–420, 1975.

DOI: 10.1111/j.1151-2916.1975.tb19013.x

Google Scholar

[7] S. J. Fiedziuszko and S. Holme, "Dielectric resonators raise your high-Q," IEEE Microw. Mag., vol. 2, no. 3, p.51–60, 2001.

DOI: 10.1109/6668.951549

Google Scholar

[8] S. Parida, S. K. Rout, V. Subramanian, P. K. Barhai, N. Gupta, and V. R. Gupta, "Structural, microwave dielectric properties and dielectric resonator antenna studies of Sr(Zr xTi 1-x)O 3 ceramics," J. Alloys Compd., vol. 528, p.126–134, 2012.

DOI: 10.1016/j.jallcom.2012.03.047

Google Scholar

[9] J. H. Paik, C. H. Choi, S. Nahm, J. D. Byun, and H. J. Lee, "Structural and microwave dielectric properties of La(Mg2/3Nb1/3)O3 ceramics," J. Mater. Sci. Lett., vol. 18, no. 11, p.889–894, 1999.

DOI: 10.1023/A:1006660613457

Google Scholar

[10] S. S. Rajput, S. Keshri, V. R. Gupta, N. Gupta, V. Bovtun, and J. Petzelt, "Design of microwave dielectric resonator antenna using MZTO-CSTO composite," Ceram. Int., vol. 38, no. 3, p.2355–2362, 2012.

DOI: 10.1016/j.ceramint.2011.10.088

Google Scholar

[11] S. George and M. T. Sebastian, "Microwave dielectric properties of novel temperature stable high Q Li2Mg1-xZnxTi3O8 and Li2A1-xCaxTi3O8 (A=Mg, Zn) ceramics," Journal of the European Ceramic Society, vol. 30, no. 12. p.2585–2592, 2010.

DOI: 10.1016/j.jeurceramsoc.2010.05.010

Google Scholar

[12] Z. Zhang et al., "High-Q and near-zero τf composite Li2Mg2TiO5-Sr3(VO4)2 ceramics for low-temperature co-fired ceramic applications," Ceram. Int., vol. 46, no. 6, p.8281–8286, 2020.

DOI: 10.1016/j.ceramint.2019.12.057

Google Scholar

[13] S. S. Rajput, S. Keshri, and V. R. Gupta, "Microwave dielectric properties of (1-x)Mg0.95Zn 0.05TiO3-(x)Ca0.6La0.8/3TiO 3 ceramic composites," J. Alloys Compd., vol. 552, p.219–226, 2013.

DOI: 10.1016/j.jallcom.2012.10.019

Google Scholar

[14] Y. Ji, K. Song, X. Luo, B. Liu, H. Barzegar Bafrooei, and D. Wang, "Microwave Dielectric Properties of (1-x) Li2MoO4–xMg2SiO4 Composite Ceramics Fabricated by Cold Sintering Process," Front. Mater., vol. 6, no. October, p.1–6, 2019.

DOI: 10.3389/fmats.2019.00256

Google Scholar

[15] H. Zhou, X. Tan, X. Chen, and H. Ruan, "Effect of raw materials pretreated by physical grinding method on the sintering ability and microwave dielectric properties of Li2MgTiO4 ceramics," J. Alloys Compd., vol. 731, p.839–843, 2018.

DOI: 10.1016/j.jallcom.2017.10.114

Google Scholar

[16] Z. Fu, P. Liu, J. Ma, X. Chen, and H. Zhang, "New high Q low-fired Li2Mg3TiO6 microwave dielectric ceramics with rock salt structure," Mater. Lett., vol. 164, p.436–439, 2016.

DOI: 10.1016/j.matlet.2015.11.046

Google Scholar

[17] J. Li et al., "Crystal structure and microwave dielectric properties of a novel rock-salt type Li3MgNbO5 ceramic," J. Mater. Sci., vol. 55, no. 33, p.15643–15652, 2020.

DOI: 10.1007/s10853-020-05141-0

Google Scholar

[18] C. Li, C. Yin, M. Deng, L. Shu, and J. Khaliq, "Tunable microwave dielectric properties in SrO-V2O5 system through compositional modulation," J. Am. Ceram. Soc., vol. 103, no. 4, p.2315–2321, 2020.

DOI: 10.1111/jace.16955

Google Scholar

[19] R. Umemura, H. Ogawa, H. Ohsato, A. Kan, and A. Yokoi, "Microwave dielectric properties of low-temperature sintered Mg3(VO4)2 ceramic," J. Eur. Ceram. Soc., vol. 25, no. 12 SPEC. ISS., p.2865–2870, 2005.

DOI: 10.1016/j.jeurceramsoc.2005.03.156

Google Scholar

[20] P. Yao, Y. Deng, and B. Li, "Sintering characteristic, microstructure and microwave dielectric properties of the borax-added Sr3(VO4)2 ceramics," Ceram. Int., vol. 47, no. 2, p.2202–2207, 2021.

DOI: 10.1016/j.ceramint.2020.09.059

Google Scholar

[21] H.M. Rietveld, "A profile refinement method for nuclear and magnetic structures," J. Appl. Crystallogr., vol. 2, no. 2, p.65–71, 1969.

DOI: 10.1107/s0021889869006558

Google Scholar

[22] L.B. Mccusker, R.B. Von Dreele, D.E. Cox, D. Louër, and P. Scardi, "Rietveld refinement guidelines," J. Appl. Crystallogr., vol. 32, no. 1, p.36–50, 1999.

DOI: 10.1107/S0021889898009856

Google Scholar

[23] B.W. Hakki and P.D. Coleman, "A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter range," IRE Trans. Microw. Theory Tech., vol. 80, no. MTT 8, p.402–410, 1960.

DOI: 10.1109/TMTT.1960.1124749

Google Scholar

[24] W.E. Courtney, "Analysis and Evaluation of a Method of Measuring the Complex Permittivity and Permeability of Microwave Insulators," IEEE Trans. Microw. Theory Tech., vol. 18, no. 8, p.476–485, 1970.

DOI: 10.1109/TMTT.1970.1127271

Google Scholar

[25] S.B. Cohn and K.C. Kelly, "Microwave Measurement of High-Dielectric-Constant Materials," IEEE Trans. Microw. Theory Tech., vol. 14, no. 9, p.406–410, 1966.

DOI: 10.1109/TMTT.1966.1126288

Google Scholar

[26] Y. Kobayashi and M. Katoh, "Microwave Measurement of Dielectric Properties of Low-Loss Materials By the Dielectric Rod Resonator Method.," IEEE Trans. Microw. Theory Tech., vol. MTT-33, no. 7, p.586–592, 1985.

DOI: 10.1109/tmtt.1985.1133033

Google Scholar

[27] M. A. Dinesh, V. Kumar, R. Kumar, V. R. Gupta, V. Subramanian, and V. Dayal, "Investigating a Cylindrical Dielectric Resonator Antenna Fabricated with Li 3 MgNbO 5 Microwave Dielectric Ceramic," ECS J. Solid State Sci. Technol., vol. 13, no. 5, p.53003, 2024.

DOI: 10.1149/2162-8777/ad4239

Google Scholar

[28] A.D. Prasetya, M. Rifai, Mujamilah, and H. Miyamoto, "X-ray diffraction (XRD) profile analysis of pure ECAP-annealing Nickel samples," J. Phys. Conf. Ser., vol. 1436, no. 1, p.012113, 2020.

DOI: 10.1088/1742-6596/1436/1/012113

Google Scholar

[29] D.L. Wood and J. Tauc, "Weak Absorption Tails in Amorphous Semiconductors," Phys. Rev. B, vol. 5, no. 8, p.3144–3151, 1972.

DOI: 10.1103/PhysRevB.5.3144

Google Scholar

[30] K. Darko and K. D. P. Guillon, Dielectric Resonators Second Edition. 1998.

Google Scholar

[31] A. Petosa, A. Ittipiboon, Y. M. M. Antar, D. Roscoe, and M. Cuhaci, "Recent Advances in Dielectric-Resonator Antenna Technology," IEEE Antennas Propag. Mag., vol. 40, no. 3, p.35–47, 1998.

DOI: 10.1109/74.706069

Google Scholar