Mechanical Characteristics of Sisal/Al2O3/Epoxy Hybrid Composites

Article Preview

Abstract:

This study examines the impact of Al2O3 particles on composites made of sisal and epoxy. A unique combination of hand lay-up and compression molding procedures are used to fabricate the Sisal/Al2O3/epoxy hybrid composites, with different weight percentages of Al2O3 particles of 0%, 1%, 2%, and 3%. The produced sisal/Al2O3/epoxy hybrid composites' flexural, tensile, and compressive properties are then correlated with water absorption studies. The sisal/epoxy composites have undoubtedly been affected by the Al2O3 particles, which have improved their mechanical and physical properties. Compared to other composite samples, the sisal/2wt.%Al2O3/epoxy hybrid composites show superior flexural, tensile, compressive, and water absorption resistances. Therefore, the optimal combination of hybrid sisal/Al2O3/epoxy composites can prominently improve the properties, making them a viable alternative for a variety of industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Khalid, Muhammad Yasir, et al. "Natural fiber reinforced composites: Sustainable materials for emerging applications." Results in Engineering 11 (2021): 100263.

DOI: 10.1016/j.rineng.2021.100263

Google Scholar

[2] Kumar, Sandeep, Alakesh Manna, and Rakesh Dang. "A review on applications of natural Fiber-Reinforced composites (NFRCs)." Materials Today: Proceedings 50 (2022): 1632-1636.

DOI: 10.1016/j.matpr.2021.09.131

Google Scholar

[3] Lotfi, Amirhossein, et al. "Natural fiber–reinforced composites: A review on material, manufacturing, and machinability." Journal of Thermoplastic Composite Materials 34.2 (2021): 238-284.

DOI: 10.1177/0892705719844546

Google Scholar

[4] Soundhar, A., et al. "Sustainable composites for lightweight applications." Materials for Lightweight Constructions. CRC Press, 2022. 191-208.

DOI: 10.1201/9781003252108-9

Google Scholar

[5] Karthi, N., et al. "An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas." Materials today: proceedings 27 (2020): 2828-2834

DOI: 10.1016/j.matpr.2020.01.011

Google Scholar

[6] Reddy, Beyanagari Sudheer, et al. "Pineapple leaf fibres for automotive applications." Pineapple Leaf Fibers: Processing, Properties and Applications (2020): 279-296.

DOI: 10.1007/978-981-15-1416-6_14

Google Scholar

[7] Kerni, Love, et al. "A review on natural fiber reinforced composites." Materials Today: Proceedings 28 (2020): 1616-1621.

DOI: 10.1016/j.matpr.2020.04.851

Google Scholar

[8] Joseph, Kuruvilla, Sabu Thomas, and C. Pavithran. "Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites." Polymer 37.23 (1996): 5139-5149.

DOI: 10.1016/0032-3861(96)00144-9

Google Scholar

[9] Joseph, P. V., Kuruvilla Joseph, and Sabu Thomas. "Effect of processing variables on the mechanical properties of sisal-fiber-reinforced polypropylene composites." Composites science and Technology 59.11 (1999): 1625-1640.

DOI: 10.1016/s0266-3538(99)00024-x

Google Scholar

[10] Arumugam, Soundhar, et al. "A review on the effect of fabric reinforcement on strength enhancement of natural fiber composites." Materials 15.9 (2022): 3025.

Google Scholar

[11] Sinitsky, Olga, Nir Trabelsi, and Elad Priel. "The Mechanical Response of Epoxy–Sisal Composites Considering Fiber Anisotropy: A Computational and Experimental Study." Fibers 10.5 (2022): 43.

DOI: 10.3390/fib10050043

Google Scholar

[12] Subbiah, Ram, et al. "Effect of nanosilica on mechanical, thermal, fatigue, and antimicrobial properties of cardanol oil/sisal fiber reinforced epoxy composite." Polymer Composites 43.11 (2022): 7940-7951.

DOI: 10.1002/pc.26930

Google Scholar

[13] Senthilkumar, K., et al. "Performance of sisal/hemp bio-based epoxy composites under accelerated weathering." Journal of Polymers and the Environment 29 (2021): 624-636.

DOI: 10.1007/s10924-020-01904-7

Google Scholar

[14] Arumugam, Soundhar, et al. "Investigations on the mechanical properties of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composite scaffolds for bone fracture fixation applications." Polymers 12.7 (2020): 1501.

DOI: 10.3390/polym12071501

Google Scholar

[15] Soundhar, A., and K. Jayakrishna. "Investigations on mechanical and morphological characterization of chitosan reinforced polymer nanocomposites." Materials Research Express 6.7 (2019): 075301.

DOI: 10.1088/2053-1591/ab1288

Google Scholar

[16] Arumugam, Soundhar, et al. "Investigations on fatigue analysis and biomimetic mineralization of glass fiber/sisal fiber/chitosan reinforced hybrid polymer sandwich composites." journal of materials research and technology 10 (2021): 512-525.

DOI: 10.1016/j.jmrt.2020.11.106

Google Scholar

[17] Arpitha, G. R., Sanjay, M. R., Senthamaraikannan, P., Barile, C., & Yogesha, B. (2017). Hybridization effect of sisal/glass/epoxy/filler based woven fabric reinforced composites. Experimental Techniques, 41(6), 577-584.

DOI: 10.1007/s40799-017-0203-4

Google Scholar

[18] Ferreira, B. T., da Silva, L. J., Panzera, T. H., Santos, J. C., Freire, R. T. S., & Scarpa, F. (2019). Sisal-glass hybrid composites reinforced with silica microparticles. Polymer Testing, 74, 57-62.

DOI: 10.1016/j.polymertesting.2018.12.026

Google Scholar

[19] James D, J. D., Manoharan, S., Saikrishnan, G., & Arjun, S. (2019). Influence of bagasse/sisal fibre stacking sequence on the mechanical characteristics of hybrid-epoxy composites. Journal of Natural Fibers, 1-11.

DOI: 10.1080/15440478.2019.1581119

Google Scholar

[20] Krishnasamy, S., Thiagamani, S. M. K., Muthukumar, C., Tengsuthiwat, J., Nagarajan, R., Siengchin, S., & Brintha, N. C. (2019). Effects of stacking sequences on static, dynamic mechanical and thermal properties of completely biodegradable green epoxy hybrid composites. Materials Research Express, 6(10), 105351.

DOI: 10.1088/2053-1591/ab3ec7

Google Scholar

[21] Soundhar, A., & Kandasamy, J. (2019). Mechanical, Chemical and Morphological Analysis of Crab shell/Sisal Natural Fiber Hybrid Composites. Journal of Natural Fibers, 1-15.

DOI: 10.1080/15440478.2019.1691127

Google Scholar

[22] Oladele, Isiaka Oluwole, et al. "Mechanical and wear behaviour of pulverised poultry eggshell/sisal fiber hybrid reinforced epoxy composites." Materials Research Express 7.4 (2020): 045304.

DOI: 10.1088/2053-1591/ab8585

Google Scholar

[23] Kumar, M. Dhinesh, et al. "Study on static and dynamic behavior of jute/sisal fiber reinforced epoxy composites." Materials Today: Proceedings 46 (2021): 9425-9428.

DOI: 10.1016/j.matpr.2020.03.064

Google Scholar

[24] Yao, Ying, et al. "Micro-and nano-scale mechanisms of enzymatic treatment on the interfacial behaviors of sisal fiber reinforced bio-based epoxy resin." Industrial Crops and Products 194 (2023): 116319.

DOI: 10.1016/j.indcrop.2023.116319

Google Scholar

[25] Karthikeyan, M.K.V., Kamaraj, L., Kavipriya, S. et al. Investigation and chemical processing effect of sisal fiber epoxy composite characteristic enhancement with nano-SiC via injection mold. Int J Adv Manuf Technol (2024).

DOI: 10.1007/s00170-024-13516-9

Google Scholar

[26] Miniappan, Pethampalayam Karuppanan, et al. "Mechanical, fracture-deformation, and tribology behavior of fillers-reinforced sisal fiber composites for lightweight automotive applications." Reviews on Advanced Materials Science 62.1 (2023): 20230342.

DOI: 10.1515/rams-2023-0342

Google Scholar

[27] Agrawal, Alok, and Saurabh Chandraker. "An experimental investigation of epoxy‐based hybrid composites with hexagonal boron nitride and short sisal fiber as reinforcement for high performance microelectronic applications." Polymer Engineering & Science 62.1 (2022): 160-173.

DOI: 10.1002/pen.25841

Google Scholar

[28] Vieira, L. M. G., Santos, J. C. D., Panzera, T. H., Christoforo, A. L., Mano, V., Campos Rubio, J. C., & Scarpa, F. (2018). Hybrid composites based on sisal fibers and silica nanoparticles. Polymer composites, 39(1), 146-156.

DOI: 10.1002/pc.23915

Google Scholar

[29] Vieira, L. M. G., dos Santos, J. C., Panzera, T. H., Rubio, J. C. C., & Scarpa, F. (2017). Novel fibre metal laminate sandwich composite structure with sisal woven core. Industrial Crops and Products, 99, 189-195.

DOI: 10.1016/j.indcrop.2017.02.008

Google Scholar

[30] Behera, S., Gautam, R.K. & Mohan, S. The effect of eco-friendly chemical treatment on sisal fiber and its epoxy composites: thermal, mechanical, tribological and morphological properties. Cellulose 29, 9055–9072 (2022).

DOI: 10.1007/s10570-022-04826-w

Google Scholar

[31] Gupta, Upendra S., Sudhir Tiwari, and Uttam Sharma. "The effect of cold glow discharge nitrogen plasma treatment of sisal fiber (Agave Sisalana) on sisal fiber reinforced epoxy composite." Pigment & Resin Technology (2023).

DOI: 10.1108/prt-02-2023-0019

Google Scholar

[32] Venkatesh, R., Dillikannan, D., Ilavarasan, N. et al. An Approach of Nano-SiC-Filled Epoxy Nanocomposite Tensile and Flexural Strength Enriched by the Addition of Sisal Fiber. J. Inst. Eng. India Ser. D (2024).

DOI: 10.1007/s40033-024-00680-1

Google Scholar

[33] Venkatesh, R., Das, A.D., Kamatchi, R.M. et al. Synthesis and Functional Behavior of Sisal Fiber-Incorporated Epoxy Hybrid Nanocomposite Enriched by Nano-SiC. J. Inst. Eng. India Ser. D (2024).

DOI: 10.1007/s40033-024-00683-y

Google Scholar

[34] Musthafa, Abdul Kareem, Arulraj, Arockia Julias, Rajamanickam, Sathish Kumar, Manoharan, Mohanraj, Sattanathan, Sivakumar and Jeyakumar P.D.,. "Biodegradability and mechanical behavior of novel hybrid green composites fabricated with cashew shell particle, sisal fiber and corn starch resin" Journal of Polymer Engineering, 2024.

DOI: 10.1515/polyeng-2023-0219

Google Scholar

[35] Thirupathy, M.; Vadivel, M.; Subbiah, T.; Pathinettampadian, G. Experimental Investigation on the Impact of Tungsten Carbide Reinforcement on the Mechanical Properties of Sisal-Fiber-Reinforced Composites. Eng. Proc. 2024, 61, 40.

DOI: 10.3390/engproc2024061040

Google Scholar