Influence of Sintering Temperature on Microstructure and Dielectric Properties of Strontium Calcium Titanate (Sr0.9Ca0.1TiO3) Ceramics

Article Preview

Abstract:

Strontium Calcium Titanate (Sr0.9Ca0.1TiO3) ceramic powders were synthesised using a solid sintering technique and were uniaxially pressed and sintered at different temperatures of 1100 °C, 1150 °C, 1200 °C, 1250 °C, and 1300 °C for three hours. Physical, phase, microstructure and dielectric properties were studied. Perovskite Cubic Strontium Calcium Titanate phase was crystallized. With an increase in sintering temperature, the density and grain size of Sr0.9Ca0.1TiO3 ceramics increased. Grain boundaries were observed in the microstructure of Sr0.9Ca0.1TiO3 sintered at higher temperatures. At room temperature, the dielectric constant and dielectric loss are observed to increase with the increase in sintering temperature. AC conductivity enhanced with sintering temperature.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

43-48

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Izyumskaya, Y. I. Alivov, S. J. Cho, H. Morkoc, H. Lee, and Y. S. Kang, "Processing, Structure, Properties, and Applications of PZT Thin Films"; in Crit. Rev. Solid State Mater. Sci., Taylor & Francis, Inc., London, 32 (2007) 111–202.

DOI: 10.1080/10408430701707347

Google Scholar

[2] A. Navrotsky, "Thermodynamics of Solid Electrolytes and Related Oxide Ceramics Based on the Fluorite Structure," J. Mater. Chem., 20 (2010) 10577–10587.

DOI: 10.1039/c0jm01521k

Google Scholar

[3] J. Linton, A. Navrotsky, and Y. Fei, "The Thermodynamics of Ordered Perovskites on the CaTiO3–FeTiO3 Join," Phys. Chem. Miner., 25 (1998) 591–596.

DOI: 10.1007/s002690050152

Google Scholar

[4] R. E. Newnham and L. E. Cross, "Ferroelectricity: The Foundation of a Field from Form to Function," MRS Bull., 30(2005). 845–848

DOI: 10.1557/mrs2005.272

Google Scholar

[5] Y. Yamashita, K. Harada, and S. Saitoh, "Recent Applications of Relaxor Materials," Ferroelectrics, 219 (1998) 665–672.

DOI: 10.1080/00150199808213495

Google Scholar

[6] K. C. Chiang, C. C. Huang, G. L. Chen, W. J. Chen, H. L. Kao, Y. H. Wu, A. Chin, and S. P. McAlister, "High-Performance SrTiO3 MIM Capacitors for Analog Applications," IEEE Trans. Electron Devices, 53 (2006) 2312–2319.

DOI: 10.1109/ted.2006.881013

Google Scholar

[7] T. Wolfram, E. A. Kraut, and F. J. Morin, "D-Band Surface States on Transition-Metal Perovskite Crystals .1. Qualitative Features and Application to SrTiO3," Phys. Rev. B, 7 (1973) 1677–1694.

Google Scholar

[8] K. X. Jin, Y. F. Li, Z. L. Wang, H. Y. Peng, W. N. Lin, A. K. K. Kyaw, Y. L. Jin, K. J. Jin, X. W. Sun, C. Soci, and T. Wu, "Tunable Photovoltaic Effect and Solar Cell Performance of Self-Doped Perovskite SrTiO3," AIP Adv., 2(2012) 042131-042139.

DOI: 10.1063/1.4766279

Google Scholar

[9] M. Yashima and M. Tanaka, "Performance of a New Furnace for High Resolution Synchrotron Powder Diffraction up to 1900 K: Application to Determine Electron Density Distribution of the Cubic CaTiO3 Perovskite at 1674 K," J. Appl. Crystallogr., 37 (2004) 786–790.

DOI: 10.1107/s002188980401698x

Google Scholar

[10] C. Gargori, R. Galindo, S. Cerro, M. Llusar, A. Garcia, J. Badenes, and G. Monros, "Ceramic Pigments Based on Chromium and Vanadium Doped CaTiO3 Perovskite Obtained by Metal Organic Decomposition (MOD)," Bol. Soc. Esp. Ceram. Vidrio, 51 (2012) 343–352

DOI: 10.3989/cyv.472012

Google Scholar

[11] A.D. Hilton, B.W. Ricketts, Dielectric properties of Ba1-xSrx TiO3 ceramics. J. Phys. D Appl. Phys. 29(1996) 1321–1325.

DOI: 10.1088/0022-3727/29/5/028

Google Scholar

[12] R.P. Wang, Y. Inaguma, M. Itoh, Dielectric properties and phase transition mechanisms in Sr1-xBaxTiO3 solid solution at low doping concentration. Mater. Res. Bull. 36(2001) 1693–1701.

DOI: 10.1016/s0025-5408(01)00644-4

Google Scholar

[13] G. Trini, A.D. Hilton, B.W. Ricketts, Dielectric energy storage in PbxSr1-xTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 12 (2001), 17–20.

Google Scholar

[14] Q.-G. Hu, Z.-Y. Shen, Y.-M. Li, Z.-M. Wang, W.-Q. Luo, Z.-X. Xie, Enhanced energy storage properties of dysprosium doped strontium titanate ceramics. Ceram. Int. 40 (2014), 2529–2534.

DOI: 10.1016/j.ceramint.2013.07.126

Google Scholar

[15] 15. Z.-Y. Shen, Y.-M. Li, W.-Q. Luo, Z.-M. Wang, X.-Y. Gu, R.-H. Liao, Structure and dielectric properties of NdxSr1-xTiO3 ceramics for energy storage application. J. Mater. Sci.: Mater. Electron. 24 (2013) 704–710.

DOI: 10.1007/s10854-012-0798-2

Google Scholar

[16] 16. G. Zhao, Y. Li, H. Liu, J. Xu, H. Hao, M. Cao, Z. Yu, Effect of SiO2 additives on the microstructure and energy storage density of SrTiO3 ceramics. J. Ceram. Process. Res. 13 (2012) 310–314.

Google Scholar

[17] L.X. Li, X.X. Yu, H.C. Cai, Q.W. Liao, Y.M. Han, Z.D. Gao, Preparation and dielectric properties of BaCu(B2O5)-doped SrTiO3-based ceramics for energy storage. Mater. Sci. Eng., B 178 (2013), 1509–1514.

DOI: 10.1016/j.mseb.2013.08.016

Google Scholar

[18] Z. Wang, M. Cao, Z. Yao, Z. Song, G. Li, W. Hu, H. Hao, H. Liu, Dielectric relaxation behaviour and energy storage properties in SrTiO3 ceramics with trace amounts of ZrO2 additives. Ceram. Int. 40 (2014) 14127–14132.

DOI: 10.1016/j.ceramint.2014.05.147

Google Scholar

[19] S. Chao, F. Dogan, BaTiO3–SrTiO3 layered dielectrics for energy storage. Mater. Lett. 65 (2011) 978–981.

DOI: 10.1016/j.matlet.2010.12.043

Google Scholar

[20] Z.J. Wang, M.H. Cao, Z.H. Yao, G.Y. Li, Z. Song, W. Hu, H. Hao, H.X. Liu, Z.Y. Yu, Effects of Sr/Ti ratio on the micro structure and energy storage properties of nonstoichiometric SrTiO3 ceramics. Ceram. Int. (Part A) 40 (2014), 929–933.

DOI: 10.1016/j.ceramint.2013.06.088

Google Scholar

[21] M. Ceh, D. Kolar, L. Golic, J. Solid State Chem. 68(1987) 68–72.

Google Scholar

[22] Y. Nakano, N. Ichinose, J. Mater. Res. 5 (1990) 2910–2921.

Google Scholar

[23] O. Jongprateep, N. Sato, R. Techapiesancharoenkij, K. Surawathanawises, P. Siwayaprahm, and P. Watthanarat, Photocatalytic and antimicrobial activities of SrxCa(1-x)TiO3 (x=0, 0.25, 0.5,0.75 and 1) powders synthesized by solution combustion technique, J. Met. Mater. Miner, 29 (2019). 42-47.

Google Scholar

[24] T. Mitsui, W. B. Westphal, Dielectric and X-Ray Studies of Cax.Ba1-xTiO3, and CaxSr1-xTiO3, Phys. Rev., 24 (1961), 1354-1359.

Google Scholar

[25] P Gwozdz, A. Lącz, E. Drozdz, Effect of calcium addition on microstructure, structure, and electrical properties of SrTiO3-based materials synthesized by citrate and solid-state reaction method, Cearm.Int., 49 (2023) 16332-16340.

DOI: 10.1016/j.ceramint.2023.01.235

Google Scholar

[26] A. Sharma, Nandhini, J. Usharani, S.S. Bhattacharya, Dielectric and ferroelectric properties of multicomponent equiatomic calcium lead strontium titanate (Ca0.33Pb0.33Sr0.33) TiO3, Open Ceramics, 6 (2021), 100130-100141.

DOI: 10.1016/j.oceram.2021.100130

Google Scholar

[27] S. Rani, N. Ahlawat, R. Punia, K.M. Sangwan, S. Rani, Dielectric relaxation and conduction mechanism of complex perovskite Ca0.90Sr0.10Cu3Ti3.95Zn0.05O12 ceramic, Ceram. Int. 44 (2018) 5996–600.

DOI: 10.1016/j.ceramint.2017.12.187

Google Scholar

[28] W Wang, Y Pu*, Xu Guo, R Shi, M Yang, J Li, Enhanced energy storage and fast charge-discharge capability inCa0.5Sr0.5TiO3-based linear dielectric ceramic, Journal of Alloys and Compounds, 817(2019) 152695.

DOI: 10.1016/j.jallcom.2019.152695

Google Scholar

[29] O. Jongprateep, N. Sato, Effects of sintering temperatures on microsttucture and dielectric constant of Ba0.05SrxCa(0.95-x)TiO3 (x=0, 0.475,and0.95) , Materials Today proceedings 17 (2019),18 98-1905.

DOI: 10.1016/j.matpr.2019.06.228

Google Scholar

[30] K.C.B. Naidu, T.S. Sarmash, M. Maddaiah,V N.Reddy, T. subba Rao, Structural and dielectric properties of CuO-doped SrTiO3 ceramics, AIP conference proceedings,1665 (2015),040001-040003.

DOI: 10.1063/1.4917614

Google Scholar

[31] Kumari Kanika Bhadwal, Bindu Raina, Yaseen Ahmad, K.K. Bamzai, Influence of iron substitution on structural, morphological, optical, dielectric and ferroelectric properties of lead-free strontium calcium titanate ceramics, Solid State Communications 384 (2024) 115491.

DOI: 10.1016/j.ssc.2024.115491

Google Scholar