Physical and Upconversion Photoluminescence Properties in Nd3+-Yb3+ Doped Lead Borate Glasses at 980 nm Excitation

Article Preview

Abstract:

Frequency upconversion (UC) photoluminescence (PL) in PbO-B2O3 glass codoped with trivalent ions of neodymium (Nd3+) and ytterbium (Yb3+) is prepared by melt quench method. X-ray diffraction (XRD) and differential scanning carorimetry (DSC) done for structural and thermal studies. Physical properties as density, oxygen packing density, lanthanide ion concentration etc. calculated. Photoluminescence of the sample gives the information of spectral lines, corresponding to the Nd3+ transitions 4G9/2 4I9/2 (at 500 nm), 4G7/2 4I9/2 (at 550 nm), [4G5/2; 2G7/2] 4I11/2 (at 595 nm) and 4G7/2 4I13/2 (at 660 nm). The dependence of the UC intensity with the Yb3+ concentration and the time behavior of the UC signal indicated the presence of two energy transfer (ET) pathways involving Nd3+-Yb3+ pairs and Yb3+-Nd3+-Yb3+ triads. Rate-equations for the population densities of the lanthanide energy levels were used to describe the dynamics of the UC emission and to determine the ET rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-56

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Jagannath, B. Eraiah, K. NagaKrishnakanth, S. Venugopal Rao, Journal of Non-Crystalline Solids,Volume 482, ( 2018), 160-169

DOI: 10.1016/j.jnoncrysol.2017.12.036

Google Scholar

[2] C. Gautam, A. K. Yadav, A. K. Singh, International Scholarly Research Network ISRN Ceramics Volume 2012, Article ID 428497, 17

Google Scholar

[3] M. Bengisu,. Journal of materials science, 51, 2199-2242(2016).

Google Scholar

[4] I. Kashif, A. Abd El-Maboud, A. Ratep, Results Phys. 4 (2014) 1–5.

Google Scholar

[5] S. Hraiech, M. Ferid, Y. Guyot, G. Boulon, J. Rare Earths 31 (2013) 685– 693.

DOI: 10.1016/s1002-0721(12)60343-3

Google Scholar

[6] Sk. Mahamuda, K. Swapna, A. Srinivasa Rao, M. Jayasimhadri, T. Sasikala, K. Pavani, L. Rama Moorthy, J. Phys. Chem. Solids 74 (2013) 1308–1315.

DOI: 10.1016/j.jpcs.2013.04.009

Google Scholar

[7] G. Gupta, A.D. Sontakke, P. Karmakar, K. Biswas, S. Balaji, R. Saha, R. Sen, K. Annapurna, J. Lumin. 149 (2014) 163–169.

DOI: 10.1016/j.jlumin.2014.01.032

Google Scholar

[8] Y. Chen, Y. Huang, M. Huang, R. Chen, Z. Luo, J. Am. Ceram. Soc. 88 (2005) 19–23.

Google Scholar

[9] D. Ramachari, L. Rama Moorthy, C.K. Jayasankar, Infrared Phys. Technol. 67 (2014) 555–559.

Google Scholar

[10] C.K. Jayasankar, V. Venkatramu, S.S. Babu, P. Babu, J. Alloys Compounds 374 (2004)22-26.

Google Scholar

[11] B. Karmakar, K. Rademann, A. Stepanov (Eds.), Glass Nanocomposites: Synthesis, Properties and Applications, Elsevier, Ox ford, UK, 2016, pp.132-142 (Chapter 5).

Google Scholar

[12] D.S. da Silva, T.A.A. de Assumpçao, L.R.P. Kassab, C.B. de Araújo, J. Alloys Compd. 586 (2014) S516-S519.

Google Scholar

[13] V.D.D. Cacho, L.R.P. Kassab, S.L. Oliveira, P. Verdonck, J. Non Cryst. Solids 352 (2006) 56-62.

Google Scholar

[14] T. Kushida, J. Phys. Soc. Jpn. 34 (1973) 1318-1326.

Google Scholar

[15] A. Biwas, R. Kapoor, G.S. Maciel, P.N. Prasad, Appl. Phys. Lett. 76 (2000) 1978-1980.

Google Scholar

[16] D.R. Gamelin, H.U. Güdel, S.R. Luthi, J. Phys. Chem. 104 (2000) 11045-11057.

Google Scholar

[17] C. Laurin, C. Parent, G. Le Flem, P. Hagenmuller, J. Phys. Chem. Solids 46 (1985) 1083-1092.

Google Scholar

[18] W. Ryba-Romanowski, S. Golab, L. Cichosz, B. Jezowska,-Trzebiatowsky, J. Non Cryst. Solids 105 (1988) 295-302.

Google Scholar

[19] A.D. Sontakke, K. Biswas, R. Sen, K. Annapurna, J. Opt. Soc. Am. B 27 (2010) 2750-2758.

Google Scholar

[20] G. F. Ansari, S. Patidar, R. Pandey, R. Kumar, Materials Science Forum, 1662-9752, Vol. 1097, pp.71-76(2023)

DOI: 10.4028/p-L9t2vI

Google Scholar

[21] R.P. Kumbhakar, S.K. Dhiman, S.K. Mahajan, G.F. Ansari - Materials Today: Proceedings, 2022, Volume 56, Part 3, 2022, 1313-1316.

DOI: 10.1016/j.matpr.2021.11.319

Google Scholar

[22] A. Wold, Chemistry of glasses, Mater. Res. Bull. 26 (1991) 836-837

Google Scholar

[23] M. Saad, M. Poulain, Glass forming ability criterion, Mater. Sci. Forum 19e20 (1987)11-18.

Google Scholar