[1]
I.S. Sihama, K.O. Jawad, S.M. Arkan, Investigation of mechanical properties of PMMA composite reinforced with different types of natural powders, ARPN Journal of Engineering and Applied Sciences, 13 (2018) 8889-8900.
Google Scholar
[2]
S. Bose, A. Bandyopadhyay,Chapter 1- Introduction to Biomaterials, in: A. BandyopadhyayS. Bose Characterization of Biomaterials, Academic Press, Oxford, 2013, 1-9.
Google Scholar
[3]
M. Saraswathy, V. Krishnaswami, D.D. Ragini,Biomaterials for Hard Tissue Engineering: Concepts, Methods, and Applications, in: B. Bhaskar, et al. Biomaterials in Tissue Engineering and Regenerative Medicine: From Basic Concepts to State of the Art Approaches, Springer Singapore, Singapore, 2021, 347-380.
DOI: 10.1007/978-981-16-0002-9_10
Google Scholar
[4]
X. Pang, X. Zhuang, Z. Tang, X. Chen, Polylactic acid (PLA): research, development and industrialization, Biotechnol J, 5 (2010) 1125-36.
DOI: 10.1002/biot.201000135
Google Scholar
[5]
R.M. Rasal, D.E. Hirt, Toughness decrease of PLA-PHBHHx blend films upon surface-confined photopolymerization, J Biomed Mater Res A, 88 (2009) 1079-86.
DOI: 10.1002/jbm.a.32009
Google Scholar
[6]
E. Adase, P. Ankutse, D. Kumadoh, M.A. Archer, M.O. Kyene, G.N. Yeboah, D.O. Asamoah Agyare, "A Review of Parquetina nigrescens (Afzel.) Bullock, A Plant for Traditional Medicine: Phytochemical and Pharmacological Properties", Evid Based Complement Alternat Med, 2022 (2022) 6076707.
DOI: 10.1155/2022/6076707
Google Scholar
[7]
A.T. Kola-Mustapha, Y.O. Ghazali, H.T. Ayotunde, S.A. Atunwa, S.O. Usman, Evaluation of the antidiarrheal activity of the leaf extract of Parquetina nigrescens and formulation into oral suspensions, J Exp Pharmacol, 11 (2019) 65-72.
DOI: 10.2147/jep.s214417
Google Scholar
[8]
S.O. Adoga, D.E. Ekle, B.A. Kyenge, T.O.-O. Aondo, C.O. Ikese, Phytochemical screening, thin-layer chromatography and antimicrobial activity study of leaf extracts, Ovidius University Annals of Chemistry, 30 (2019) 88-94.
DOI: 10.2478/auoc-2019-0016
Google Scholar
[9]
M.S. Zafar, Prosthodontic Applications of Polymethyl Methacrylate (PMMA): An Update, Polymers (Basel), 12 (2020)
DOI: 10.3390/polym12102299
Google Scholar
[10]
Y. Wang, M.A. Hillmyer, Polyethylene-poly(L-lactide) diblock copolymers: synthesis and compatibilization of poly(L-lactide)/polyethylene blends, Journal of Polymer Science Part A, 39 (2001) 2755-2766.
DOI: 10.1002/pola.1254
Google Scholar
[11]
P. Saini, M. Arora, M.N.V.R. Kumar, Poly(lactic acid) blends in biomedical applications, Advanced Drug Delivery Reviews, 107 (2016) 47-59.
DOI: 10.1016/j.addr.2016.06.014
Google Scholar
[12]
K.S. Sanjay, A. Prashant, C. Abhishek, High Molecular Weight Poly(Lactic Acid) Synthesized With Apposite Catalytic Combination and Longer Time, Oriental Journal of Chemistry, 34 (2018) 1984-1990.
DOI: 10.13005/ojc/3404036
Google Scholar
[13]
F.J. Akinrinmade, A.S. Akinrinde, O.O. Soyemi, A.A. Oyagbemi, Antioxidant Potential of the Methanol Extract of Parquetina nigrescens Mediates Protection Against Intestinal Ischemia-Reperfusion Injury in Rats, J Diet Suppl, 13 (2016) 420-32.
DOI: 10.3109/19390211.2015.1103828
Google Scholar
[14]
J.Y. Datté, A. Ziegler, Pharmacological investigation on nigrescigenin-a cardenolide from Parquetina nigrescens (Afzel.) Bullock: comparative studies on cardiotonic effects of Parquetina nigrescens, g-strophanthin and noradrenaline in guinea-pig isolated atria, Journal of Pharmacy and Pharmacology, 53 (2001) 859-866.
DOI: 10.1211/0022357011776018
Google Scholar
[15]
A.O. Ayoola, O. Akinloye, O.O. Oguntibeju, J.M. Oke, A.A. Odetola, Antioxidant activities of Parquetina nigrescens, 10 (2011) 4921-4925.
Google Scholar
[16]
Z. Raszewski, A. Nowakowska-Toporowska, J. Weżgowiec, D. Nowakowska, W. Więckiewicz, Influence of silanized silica and silanized feldspar addition on the mechanical behavior of polymethyl methacrylate resin denture teeth, J Prosthet Dent, 123 (2020) 647.e1-647.e7.
DOI: 10.1016/j.prosdent.2019.12.007
Google Scholar
[17]
M. Vojdani, R. Giti, Polyamide as a Denture Base Material: A Literature Review, J Dent (Shiraz), 16 (2015) 1-9.
Google Scholar
[18]
S.A. Bello, Hybrid Polymeric Nanocomposites from Agricultural Waste,1st, Published by Taylor & Francis, Boca Raton, Florida, United States, 2022.
Google Scholar
[19]
H.S. Barbara, Infrared Spectroscopy: Fundamentals and Applications, John Wiley &Son, University of Technology, Sydney, Australia, 2004.
Google Scholar
[20]
S.A. Bello, J.O. Agunsoye, S.B. Hassan, Synthesis of Coconut Shell Nanoparticles Via A Top Down Approach: Assessment of Milling Duration on The Particle Sizes and Morphologies of Coconut Shell Nanoparticles, Materials Letters, 159 (2015) 514-519.
DOI: 10.1016/j.matlet.2015.07.063
Google Scholar
[21]
ASTM D638-14 Standard Test Method for Tensile Properties of Plastics, ASTM International, West Conshohocken, PA,, 2014.
Google Scholar
[22]
S.A. Bello, M.Y. Kolawole,Recycled Plastics and Nanoparticles for Green Production of Nano Structural Materials, in: O.V. Kharissova, L.M.T. MartínezB.I. Kharisov Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications, Springer International Publishing, Cham, 2021, 599-630.
DOI: 10.1007/978-3-030-36268-3_93
Google Scholar
[23]
S.A. Bello, F.O. Kolawole, S.I. Durowaye, S.W. Balogun, M.Y. Kolawole, S.A. Mohammed,Recent Developments in Techniques and Technologies for Analytical, Spectroscopic, Structural, and Morphological Characterisation of Modern Materials of Advanced Applications, in: N. KulkarniB.I. Kharissov Handbook of Emerging Materials for Sustainable Energy, Elsevier Amsterdam, 2024, 675-724.
DOI: 10.1016/b978-0-323-96125-7.00037-x
Google Scholar
[24]
S.A. Bello, N.K. Raji, M.Y. Kolawole, M.K. Adebayo, J.A. Adebisi, K.A. Okunola, M.O. AbdulSalaam, Eggshell nanoparticle reinforced recycled low-density polyethylene: A new material for automobile application, Journal of King Saud University - Engineering Sciences, 35 (2023) 406-414.
DOI: 10.1016/j.jksues.2021.04.008
Google Scholar
[25]
ASTM D256-10(2018), Standard Test Methods for Determining the Izod Pendulum Impact Resistance of Plastics, ASTM International, West Conshohocken, PA, 2018.
Google Scholar
[26]
A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to Read and Interpret FTIR Spectroscope of Organic Material, Indonesian Journal of Science & Technology, 4 (2019) 97-118.
DOI: 10.17509/ijost.v4i1.15806
Google Scholar
[27]
G.H. Jeffery, J. Basset, J. Mendham, R.C. Denney, VOGEL's Textbook of Quantitative Chemical Analysis,5, Longman Scientific and Technical, New York, 1989.
Google Scholar
[28]
S.A. Bello, Wear and thermal resistance properties of aluminium particulate microcomposites, Bulletin of Materials Science, 43 (2020) 1-15.
DOI: 10.1007/s12034-020-02206-3
Google Scholar
[29]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, N.K. Raji, R.G. Adeyemo, A.G.F. Alabi, S.B. Hassan, Flexural Performances of Epoxy Aluminium Particulate Composites, Engineering Journal, Chulalongkorn University, 22 (2018) 97-107.
DOI: 10.4186/ej.2018.22.4.97
Google Scholar
[30]
S.A. Bello, J.O. Agunsoye, J.A. Adebisi, S.B. Hassan, Optimisation of charge ratios for ball milling synthesis: agglomeration and refinement of coconut shells, Engineering and Applied Science Research (EASR), 42 (2018) 262-272.
Google Scholar
[31]
S.A. Bello, S.B. Hassan, J.O. Agunsoye, M.G.Z. Kana, R.I. A, Synthesis of Uncarbonised Coconut Shell Nanoparticles: Characterisation and Particle Size Determination Tribology in Industry, 37 (2015) 257-263.
Google Scholar
[32]
P. Bazan, P. Nosal, B. Kozub, S. Kuciel, Biobased Polyethylene Hybrid Composites with Natural Fiber: Mechanical, Thermal Properties, and Micromechanics, Materials (Basel), 13 (2020)
DOI: 10.3390/ma13132967
Google Scholar
[33]
I.O. Oladele, O.G. Agbabiaka, A.A. Adediran, A.D. Akinwekomi, A.O. Balogun, Structural performance of poultry eggshell derived hydroxyapatite based high density polyethylene bio-composites, Heliyon, 5 (2019) e02552.
DOI: 10.1016/j.heliyon.2019.e02552
Google Scholar
[34]
S.A. Bello, M.K. Adebayo, R.G. Adeyemo, P.A. Popoola, Sustainable hybrid nanoparticle reinforced low-density polyethylene: emerging materials for engineering applications, Iranian Polymer Journal, 33 (2024) 965-980.
DOI: 10.1007/s13726-024-01307-8
Google Scholar
[35]
J.O. Agunsoye, S.A. Bello, L.O. Adetola, Experimental investigation and theoretical prediction of tensile properties of Delonix regia seed particle reinforced polymeric composites, Journal of King Saud University - Engineering Sciences, 31 (2019) 70-77.
DOI: 10.1016/j.jksues.2017.01.005
Google Scholar
[36]
S.A. Bello, S.I. Durowaye, W.E. Aigbona, B.O. Bolasodun, K. Audu, S.O. Abdul Ganiyu,Parquetina nigrescens–Reinforced Polylactic Acid (PLA) Composites for Engineering Applications, in: S.A. Bello Hybrid Polymeric Nanocomposites from Agricultural Waste, CRC, Taylor and Francis, USA, 2022, 279-319.
DOI: 10.1201/9781003170549-15
Google Scholar
[37]
X. Li, C. Guo, X. Liu, L. Liu, J. Bai, F. Xue, P. Lin, C. Chu, Impact behaviors of poly-lactic acid based biocomposite reinforced with unidirectional high-strength magnesium alloy wires, Progress in Natural Science: Materials International, 24 (2014) 472-478.
DOI: 10.1016/j.pnsc.2014.08.003
Google Scholar
[38]
S.A. Bello, O.E. Egbanubi, A.G.F. Alabi, Emerging hybrid particle-reinforced high-density polyethylene nanocomposite for bone replacement, Polymer Bulletin, 81 (2024) 1743-1766.
DOI: 10.1007/s00289-023-04791-9
Google Scholar