Ready-to-Use Flowable Hydraulic Tricalcium Silicate-Based Dental Cement Paste with Antibiotic Releasing Capacity

Article Preview

Abstract:

Calcium silicate-based cements have been investigated recently for various medical applications. One notable application is using calcium silicate cement in dental root canal treatments. This work aimed to develop a novel flowable dual-paste calcium silicate sealer with an extended capacity for releasing antibiotic drugs. This study prepared a composite dental cement incorporating tri- and dicalcium silicate (C2S and C3S) and nano-hydroxyapatite (nHA). International standards are followed by the sealers' film thickness, flowability values, working time, and setting time. The formation of calcium hydroxide and calcium silicate hydrate was proved in the XRD patterns, which attributed to the hydration of C2S and C3S. The in vitro release of Amoxicillin (AMX) loaded in the composite cement was conducted in deionized (DI) water and phosphate-buffered saline (PBS) and investigated using Higuchi and Weibull models. Upon immersion in PBS, the sedimentation of hydroxyapatite layer on the cement surface, led to a comparatively slower AMX release rate than that in water. The results of the agar diffusion test showed that the presence of the antibiotic drug improved antibacterial properties in such a way that by adding AMX in the cement formulation, the diameter of the inhibition zone increased from 31.61 mm in TCS to 40.17 mm in TCS- 30 mM sample after 72 hours. These results imply that the drug-loaded cement pastes hold potential for application as a bioactive dental root canal sealer, offering antibiotic-loading properties with long-term release capabilities.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

83-96

Citation:

Online since:

December 2024

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2024 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.O. Makanjuola, O.H. Oderinu, D.C. Umesi, Treatment Outcome and Root Canal Preparation Techniques : 5-Year Follow-Up, Int. Dent. J. 72 (2022) 811–818.

DOI: 10.1016/j.identj.2022.08.008

Google Scholar

[2] N.P. Chandler, Root canal filling, in: Harty's Endod. Clin. Pract. Sixth Ed., Churchill Livingstone, 2010: p.131–157.

Google Scholar

[3] H. Jin, Y. Li, Q. Wang, M. Dong, M. Yang, W. Chen, S. Wang, H. Zhang, S. Zheng, C. Ying, Z. Zhou, Q. Li, A strontium and amorphous calcium phosphate dipped premixed injectable calcium silicate-based ceramic for dental root canal sealing, Ceram. Int. (2021).

DOI: 10.1016/j.ceramint.2021.08.284

Google Scholar

[4] M.H.C. Kao, Y.C.T. Hsu, The synergistic effects of chinese herb and injectable calcium silicate / b -tricalcium phosphate composite on an osteogenic accelerator in vitro, J. Mater. Sci. Mater. Med. (2015).

DOI: 10.1007/s10856-015-5484-5

Google Scholar

[5] R. Rekha, R. Kavitha, R. Venkitachalam, S.V. Prabath, S. Deepthy, V. Krishnan, Comparison of the sealing ability of bioceramic sealer against epoxy resin based sealer: A systematic review & meta-analysis, J. Oral Biol. Craniofacial Res. 13 (2023) 28–35.

DOI: 10.1016/j.jobcr.2022.10.006

Google Scholar

[6] S.R. Schwartz, Adhesive Dentistry and Endodontics. Part 2: Bonding in the Root Canal System—The Promise and the Problems: A Review, J. Endod. 32 (2007) 1125–34.

DOI: 10.1016/j.joen.2006.08.003

Google Scholar

[7] D.G. Seo, D. Lee, Y.M. Kim, D. Song, S.Y. Kim, Biocompatibility and mineralization activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells, Materials (Basel). 12 (2019) 1–12.

DOI: 10.3390/ma12152482

Google Scholar

[8] E.J. Silva, F. Hecksher, V.T. Vieira, R.R. Vivan, M.A. Duarte, S.C. Brasil, H.S. Antunes, Cytotoxicity, antibacterial and physicochemical properties of a new epoxy resin-based endodontic sealer containing calcium hydroxide, J. Clin. Exp. Dent. 12 (2020) 533–539.

DOI: 10.4317/jced.56534

Google Scholar

[9] A.C.P. Janini, G.F. Bombarda, L.E. Pelepenko, M.A. Marcano, Antimicrobial activity of calcium silicate-based dental materials: A literature review, Antibiotics. 10 (2021).

DOI: 10.3390/antibiotics10070865

Google Scholar

[10] M.T. Arias-Moliz, J. Camilleri, The effect of the final irrigant on the antimicrobial activity of root canal sealers, J. Dent. 52 (2016) 30–36.

DOI: 10.1016/j.jdent.2016.06.008

Google Scholar

[11] J. Wong, D. Manoil, P. Näsman, G.N. Belibasakis, Microbiological Aspects of Root Canal Infections and Disinfection Strategies : An Update Review on the Current Knowledge and Challenges, 2 (2021).

DOI: 10.3389/froh.2021.672887

Google Scholar

[12] G. Voicu, S.I. Jinga, B.G. Drosu, C. Busuioc, Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry, Carbohydr. Polym. 174 (2017) 160–170.

DOI: 10.1016/j.carbpol.2017.06.062

Google Scholar

[13] F. Zamparini, C. Prati, P. Taddei, A. Spinelli, M. Di Foggia, M.G. Gandolfi, Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers, Int. J. Mol. Sci. 23 (2022).

DOI: 10.3390/ijms232213914

Google Scholar

[14] Q. Wang, L. Hu, X. Wang, R. Tang, Expanding from materials to biology inspired by biomineralization, (2024).

Google Scholar

[15] P. Srinath, P. Abdul Azeem, K. Venugopal Reddy, Review on calcium silicate-based bioceramics in bone tissue engineering, Int. J. Appl. Ceram. Technol. 17 (2020) 2450–2464.

DOI: 10.1111/ijac.13577

Google Scholar

[16] P.Z. Tawil, D.J. Duggan, J.C. Galicia, MTA: A Clinical Review, Compend. Contin. Educ. Dent. 36 (2016).

Google Scholar

[17] M. Wu, T. Wang, Y. Zhang, Premixed tricalcium silicate / sodium phosphate dibasic cements for root canal filling, Mater. Chem. Phys. 257 (2021).

DOI: 10.1016/j.matchemphys.2020.123682

Google Scholar

[18] M. Batur, M.Y. Özata, Premixed calcium silicate-based cements : a literature review, J. Dent. Sci. Educ. 7 (2023).

Google Scholar

[19] X. Li, M.S. Pedano, S. Li, Z. Sun, C. Jeanneau, I. About, E. Hauben, Z. Chen, K. Van Landuyt, B. Van Meerbeek, Preclinical effectiveness of an experimental tricalcium silicate cement on pulpal repair, Mater. Sci. Eng. C. 116 (2020).

DOI: 10.1016/j.msec.2020.111167

Google Scholar

[20] M. Ji, H. Chen, Y. Yan, Z. Ding, H. Ren, Y. Zhong, Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo, J. Biomater. Appl. 34 (2020) 1422–1436.

DOI: 10.1177/0885328220907784

Google Scholar

[21] A. Upadhyay, L. Pradhan, D. Yenurkar, K. Kumar, S. Mukherjee, Advancement in ceramic biomaterials for dental implants, Int. J. Appl. Ceram. Technol. (2024).

DOI: 10.1111/ijac.14772

Google Scholar

[22] F. Panahi, S.M. Rabiee, R. Shidpour, Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application, Mater. Sci. Eng. C. 80 (2017) 631–641.

DOI: 10.1016/j.msec.2017.07.012

Google Scholar

[23] M. Qiu, D. Chen, C. Shen, J. Shen, H. Zhao, Y. He, Preparation of: In situ forming and injectable alginate/mesoporous Sr-containing calcium silicate composite cement for bone repair, RSC Adv. 7 (2017) 23671–23679.

DOI: 10.1039/c6ra28860j

Google Scholar

[24] M.S. Pedano, X. Li, B. Camargo, E. Hauben, S. De Vleeschauwer, K. Yoshihara, K. Van Landuyt, Y. Yoshida, B. Van Meerbeek, Injectable phosphopullulan-functionalized calcium-silicate cement for pulp-tissue engineering: An in-vivo and ex-vivo study, Dent. Mater. 36 (2020) 512–526.

DOI: 10.1016/j.dental.2020.01.011

Google Scholar

[25] C.W.T. Chiang, Physicochemical properties and osteogenic activity of radiopaque calcium silicate – gelatin cements, (2014) 2193–2203.

DOI: 10.1007/s10856-014-5258-5

Google Scholar

[26] A. Forouzandeh, S. Hesaraki, A. Zamanian, The releasing behavior and in vitro osteoinductive evaluations of dexamethasone-loaded porous calcium phosphate cements, Ceram. Int. 40 (2014) 1081–1091.

DOI: 10.1016/j.ceramint.2013.06.107

Google Scholar

[27] S.M. Rabiee, Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride, Bull. Mater. Sci. 36 (2013) 171–174.

DOI: 10.1007/s12034-013-0424-9

Google Scholar

[28] P. Trucillo, Drug Carriers : A Review on the Most Used Mathematical Models for Drug Release, Processes. 10 (2022).

DOI: 10.3390/pr10061094

Google Scholar

[29] A. Casino-Alegre, S. Aranda-Verdú, J.I. Zarzosa-López, J. Rubio-Climent, E. Plasencia-Alcina, A. Pallarés-Sabater, Intratubular penetration ability in the canal perimeter using HiFlow bioceramic sealer with warm obturation techniques and single cone, J. Clin. Exp. Dent. 14 (2022) 639–645.

DOI: 10.4317/jced.59815

Google Scholar

[30] C. Persson, H. Engqvist, Premixed calcium silicate cement for endodontic applications: Injectability , setting time and radiopacity, Biomatter. 1 (2011) 76–80.

DOI: 10.4161/biom.1.1.16735

Google Scholar

[31] Y. Zhou, C. Xu, X. Wang, Y. Dou, Z. Huan, J. Chang, Fast setting tricalcium silicate/magnesium phosphate premixed cement for root canal filling, Elsevier Ltd and Techna Group S.r.l., 2018.

DOI: 10.1016/j.ceramint.2017.11.058

Google Scholar

[32] S.S. Raghavendra, G.R. Jadhav, K.M. Gathani, P. Kotadia, Bioceramics in endodontics - a review, J Istanb Univ Fac Dent. 51 (2017) 128–137.

DOI: 10.17096/jiufd.63659

Google Scholar

[33] Y. ni Tan, W. juan Chen, Y. Liu, Y. jun Liu, Preparation of tricalcium silicate and investigation of hydrated cement, J. Cent. South Univ. 27 (2020) 3227–3238.

DOI: 10.1007/s11771-020-4542-4

Google Scholar

[34] I. Permanadewi, A.C. Kumoro, D.H. Wardhani, N. Aryanti, Modelling of controlled drug release in gastrointestinal tract simulation, J. Phys. Conf. Ser. 1295 (2019).

DOI: 10.1088/1742-6596/1295/1/012063

Google Scholar

[35] P. Upadhyay, S. Upadhyay, Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC, J. Appl. Pharm. Sci. 1 (2011) 186–190.

Google Scholar

[36] J. Schnieders, U. Gbureck, E. Vorndran, M. Schossig, T. Kissel, The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites, J. Biomed. Mater. Res. - Part B Appl. Biomater. 99 B (2011) 391–398.

DOI: 10.1002/jbm.b.31910

Google Scholar

[37] E. Vorndran, M. Geffers, A. Ewald, M. Lemm, B. Nies, U. Gbureck, Ready-to-use injectable calcium phosphate bone cement paste as drug carrier, Acta Biomater. 9 (2013) 9558–9567.

DOI: 10.1016/j.actbio.2013.08.009

Google Scholar

[38] G. Pizzo, G.M. Giammanco, E. Cumbo, G. Nicolosi, G. Gallina, In vitro antibacterial activity of endodontic sealers, J. Dent. 34 (2006) 35–40.

DOI: 10.1016/j.jdent.2005.03.001

Google Scholar

[39] A. Rehan, Antibacterial Activity of Two Calcium Silicate-Based Root Canal Sealers Against Enterococcus Faecalis, Egypt. Dent. J. 65 (2019) 2723–2730.

DOI: 10.21608/edj.2019.72652

Google Scholar

[40] D. Donnermeyer, P. Schemkämper, S. Bürklein, E. Schäfer, Short and Long-Term Solubility, Alkalizing Effect, and Thermal Persistence of Premixed Calcium Silicate-Based Sealers: AH Plus Bioceramic Sealer vs. Total Fill BC Sealer, Materials (Basel). 15 (2022).

DOI: 10.3390/ma15207320

Google Scholar

[41] P.M. Christopher, Z. Ping, M. Suzanne, D.E. Paul, pH Required to Kill Enterococcus faecalis in Vitro, J. Endod. 30 (2004) 218–219.

Google Scholar