[1]
J.O. Makanjuola, O.H. Oderinu, D.C. Umesi, Treatment Outcome and Root Canal Preparation Techniques : 5-Year Follow-Up, Int. Dent. J. 72 (2022) 811–818.
DOI: 10.1016/j.identj.2022.08.008
Google Scholar
[2]
N.P. Chandler, Root canal filling, in: Harty's Endod. Clin. Pract. Sixth Ed., Churchill Livingstone, 2010: p.131–157.
Google Scholar
[3]
H. Jin, Y. Li, Q. Wang, M. Dong, M. Yang, W. Chen, S. Wang, H. Zhang, S. Zheng, C. Ying, Z. Zhou, Q. Li, A strontium and amorphous calcium phosphate dipped premixed injectable calcium silicate-based ceramic for dental root canal sealing, Ceram. Int. (2021).
DOI: 10.1016/j.ceramint.2021.08.284
Google Scholar
[4]
M.H.C. Kao, Y.C.T. Hsu, The synergistic effects of chinese herb and injectable calcium silicate / b -tricalcium phosphate composite on an osteogenic accelerator in vitro, J. Mater. Sci. Mater. Med. (2015).
DOI: 10.1007/s10856-015-5484-5
Google Scholar
[5]
R. Rekha, R. Kavitha, R. Venkitachalam, S.V. Prabath, S. Deepthy, V. Krishnan, Comparison of the sealing ability of bioceramic sealer against epoxy resin based sealer: A systematic review & meta-analysis, J. Oral Biol. Craniofacial Res. 13 (2023) 28–35.
DOI: 10.1016/j.jobcr.2022.10.006
Google Scholar
[6]
S.R. Schwartz, Adhesive Dentistry and Endodontics. Part 2: Bonding in the Root Canal System—The Promise and the Problems: A Review, J. Endod. 32 (2007) 1125–34.
DOI: 10.1016/j.joen.2006.08.003
Google Scholar
[7]
D.G. Seo, D. Lee, Y.M. Kim, D. Song, S.Y. Kim, Biocompatibility and mineralization activity of three calcium silicate-based root canal sealers compared to conventional resin-based sealer in human dental pulp stem cells, Materials (Basel). 12 (2019) 1–12.
DOI: 10.3390/ma12152482
Google Scholar
[8]
E.J. Silva, F. Hecksher, V.T. Vieira, R.R. Vivan, M.A. Duarte, S.C. Brasil, H.S. Antunes, Cytotoxicity, antibacterial and physicochemical properties of a new epoxy resin-based endodontic sealer containing calcium hydroxide, J. Clin. Exp. Dent. 12 (2020) 533–539.
DOI: 10.4317/jced.56534
Google Scholar
[9]
A.C.P. Janini, G.F. Bombarda, L.E. Pelepenko, M.A. Marcano, Antimicrobial activity of calcium silicate-based dental materials: A literature review, Antibiotics. 10 (2021).
DOI: 10.3390/antibiotics10070865
Google Scholar
[10]
M.T. Arias-Moliz, J. Camilleri, The effect of the final irrigant on the antimicrobial activity of root canal sealers, J. Dent. 52 (2016) 30–36.
DOI: 10.1016/j.jdent.2016.06.008
Google Scholar
[11]
J. Wong, D. Manoil, P. Näsman, G.N. Belibasakis, Microbiological Aspects of Root Canal Infections and Disinfection Strategies : An Update Review on the Current Knowledge and Challenges, 2 (2021).
DOI: 10.3389/froh.2021.672887
Google Scholar
[12]
G. Voicu, S.I. Jinga, B.G. Drosu, C. Busuioc, Improvement of silicate cement properties with bacterial cellulose powder addition for applications in dentistry, Carbohydr. Polym. 174 (2017) 160–170.
DOI: 10.1016/j.carbpol.2017.06.062
Google Scholar
[13]
F. Zamparini, C. Prati, P. Taddei, A. Spinelli, M. Di Foggia, M.G. Gandolfi, Chemical-Physical Properties and Bioactivity of New Premixed Calcium Silicate-Bioceramic Root Canal Sealers, Int. J. Mol. Sci. 23 (2022).
DOI: 10.3390/ijms232213914
Google Scholar
[14]
Q. Wang, L. Hu, X. Wang, R. Tang, Expanding from materials to biology inspired by biomineralization, (2024).
Google Scholar
[15]
P. Srinath, P. Abdul Azeem, K. Venugopal Reddy, Review on calcium silicate-based bioceramics in bone tissue engineering, Int. J. Appl. Ceram. Technol. 17 (2020) 2450–2464.
DOI: 10.1111/ijac.13577
Google Scholar
[16]
P.Z. Tawil, D.J. Duggan, J.C. Galicia, MTA: A Clinical Review, Compend. Contin. Educ. Dent. 36 (2016).
Google Scholar
[17]
M. Wu, T. Wang, Y. Zhang, Premixed tricalcium silicate / sodium phosphate dibasic cements for root canal filling, Mater. Chem. Phys. 257 (2021).
DOI: 10.1016/j.matchemphys.2020.123682
Google Scholar
[18]
M. Batur, M.Y. Özata, Premixed calcium silicate-based cements : a literature review, J. Dent. Sci. Educ. 7 (2023).
Google Scholar
[19]
X. Li, M.S. Pedano, S. Li, Z. Sun, C. Jeanneau, I. About, E. Hauben, Z. Chen, K. Van Landuyt, B. Van Meerbeek, Preclinical effectiveness of an experimental tricalcium silicate cement on pulpal repair, Mater. Sci. Eng. C. 116 (2020).
DOI: 10.1016/j.msec.2020.111167
Google Scholar
[20]
M. Ji, H. Chen, Y. Yan, Z. Ding, H. Ren, Y. Zhong, Effects of tricalcium silicate/sodium alginate/calcium sulfate hemihydrate composite cements on osteogenic performances in vitro and in vivo, J. Biomater. Appl. 34 (2020) 1422–1436.
DOI: 10.1177/0885328220907784
Google Scholar
[21]
A. Upadhyay, L. Pradhan, D. Yenurkar, K. Kumar, S. Mukherjee, Advancement in ceramic biomaterials for dental implants, Int. J. Appl. Ceram. Technol. (2024).
DOI: 10.1111/ijac.14772
Google Scholar
[22]
F. Panahi, S.M. Rabiee, R. Shidpour, Synergic effect of chitosan and dicalcium phosphate on tricalcium silicate-based nanocomposite for root-end dental application, Mater. Sci. Eng. C. 80 (2017) 631–641.
DOI: 10.1016/j.msec.2017.07.012
Google Scholar
[23]
M. Qiu, D. Chen, C. Shen, J. Shen, H. Zhao, Y. He, Preparation of: In situ forming and injectable alginate/mesoporous Sr-containing calcium silicate composite cement for bone repair, RSC Adv. 7 (2017) 23671–23679.
DOI: 10.1039/c6ra28860j
Google Scholar
[24]
M.S. Pedano, X. Li, B. Camargo, E. Hauben, S. De Vleeschauwer, K. Yoshihara, K. Van Landuyt, Y. Yoshida, B. Van Meerbeek, Injectable phosphopullulan-functionalized calcium-silicate cement for pulp-tissue engineering: An in-vivo and ex-vivo study, Dent. Mater. 36 (2020) 512–526.
DOI: 10.1016/j.dental.2020.01.011
Google Scholar
[25]
C.W.T. Chiang, Physicochemical properties and osteogenic activity of radiopaque calcium silicate – gelatin cements, (2014) 2193–2203.
DOI: 10.1007/s10856-014-5258-5
Google Scholar
[26]
A. Forouzandeh, S. Hesaraki, A. Zamanian, The releasing behavior and in vitro osteoinductive evaluations of dexamethasone-loaded porous calcium phosphate cements, Ceram. Int. 40 (2014) 1081–1091.
DOI: 10.1016/j.ceramint.2013.06.107
Google Scholar
[27]
S.M. Rabiee, Development of hydroxyapatite bone cement for controlled drug release via tetracycline hydrochloride, Bull. Mater. Sci. 36 (2013) 171–174.
DOI: 10.1007/s12034-013-0424-9
Google Scholar
[28]
P. Trucillo, Drug Carriers : A Review on the Most Used Mathematical Models for Drug Release, Processes. 10 (2022).
DOI: 10.3390/pr10061094
Google Scholar
[29]
A. Casino-Alegre, S. Aranda-Verdú, J.I. Zarzosa-López, J. Rubio-Climent, E. Plasencia-Alcina, A. Pallarés-Sabater, Intratubular penetration ability in the canal perimeter using HiFlow bioceramic sealer with warm obturation techniques and single cone, J. Clin. Exp. Dent. 14 (2022) 639–645.
DOI: 10.4317/jced.59815
Google Scholar
[30]
C. Persson, H. Engqvist, Premixed calcium silicate cement for endodontic applications: Injectability , setting time and radiopacity, Biomatter. 1 (2011) 76–80.
DOI: 10.4161/biom.1.1.16735
Google Scholar
[31]
Y. Zhou, C. Xu, X. Wang, Y. Dou, Z. Huan, J. Chang, Fast setting tricalcium silicate/magnesium phosphate premixed cement for root canal filling, Elsevier Ltd and Techna Group S.r.l., 2018.
DOI: 10.1016/j.ceramint.2017.11.058
Google Scholar
[32]
S.S. Raghavendra, G.R. Jadhav, K.M. Gathani, P. Kotadia, Bioceramics in endodontics - a review, J Istanb Univ Fac Dent. 51 (2017) 128–137.
DOI: 10.17096/jiufd.63659
Google Scholar
[33]
Y. ni Tan, W. juan Chen, Y. Liu, Y. jun Liu, Preparation of tricalcium silicate and investigation of hydrated cement, J. Cent. South Univ. 27 (2020) 3227–3238.
DOI: 10.1007/s11771-020-4542-4
Google Scholar
[34]
I. Permanadewi, A.C. Kumoro, D.H. Wardhani, N. Aryanti, Modelling of controlled drug release in gastrointestinal tract simulation, J. Phys. Conf. Ser. 1295 (2019).
DOI: 10.1088/1742-6596/1295/1/012063
Google Scholar
[35]
P. Upadhyay, S. Upadhyay, Evaluation of drug release kinetics from ibuprofen matrix tablets using HPMC, J. Appl. Pharm. Sci. 1 (2011) 186–190.
Google Scholar
[36]
J. Schnieders, U. Gbureck, E. Vorndran, M. Schossig, T. Kissel, The effect of porosity on drug release kinetics from vancomycin microsphere/calcium phosphate cement composites, J. Biomed. Mater. Res. - Part B Appl. Biomater. 99 B (2011) 391–398.
DOI: 10.1002/jbm.b.31910
Google Scholar
[37]
E. Vorndran, M. Geffers, A. Ewald, M. Lemm, B. Nies, U. Gbureck, Ready-to-use injectable calcium phosphate bone cement paste as drug carrier, Acta Biomater. 9 (2013) 9558–9567.
DOI: 10.1016/j.actbio.2013.08.009
Google Scholar
[38]
G. Pizzo, G.M. Giammanco, E. Cumbo, G. Nicolosi, G. Gallina, In vitro antibacterial activity of endodontic sealers, J. Dent. 34 (2006) 35–40.
DOI: 10.1016/j.jdent.2005.03.001
Google Scholar
[39]
A. Rehan, Antibacterial Activity of Two Calcium Silicate-Based Root Canal Sealers Against Enterococcus Faecalis, Egypt. Dent. J. 65 (2019) 2723–2730.
DOI: 10.21608/edj.2019.72652
Google Scholar
[40]
D. Donnermeyer, P. Schemkämper, S. Bürklein, E. Schäfer, Short and Long-Term Solubility, Alkalizing Effect, and Thermal Persistence of Premixed Calcium Silicate-Based Sealers: AH Plus Bioceramic Sealer vs. Total Fill BC Sealer, Materials (Basel). 15 (2022).
DOI: 10.3390/ma15207320
Google Scholar
[41]
P.M. Christopher, Z. Ping, M. Suzanne, D.E. Paul, pH Required to Kill Enterococcus faecalis in Vitro, J. Endod. 30 (2004) 218–219.
Google Scholar