Unveiling the Corrosion, Optoelectrical and Strengthening Effect of Recycled Snail Shell Particulate on Doped 75Al + 25SSP Alloy for Marine and Automotive Application

Article Preview

Abstract:

Modern engineering components require composites that are robust, lightweight, and inexpensive as integrated particulate for solid strengthening and corrosion resistance alloy. This study envisions a snail shell particulate (SSP) as a potential biofillers on aluminium alloy due to its inherent characteristics. The fabrication of the developed alloy was done through liquid stir casting method with determination to examine the correspondent physical, optoelectrical, electrochemical, and microstructural behaviour for chemical application. Composite infringement varies from 10% - 25% SSP after optimization using design of experiment. The result of electrochemical analysis showed a notable decrease in corrosion rate with increased SSP content from 12.06 mm/yr, of control sample to (75Al-25SSP) which had a corrosion rate of 7.59 mm/yr, resulting in a 40.1% drop-in degradation rate. Notably, microhardness properties increase from 28.1 to 45.5 HRB as a result of solid strengthening characteristics of doped fillers. Opto-electrical assessment demonstrated decreasing resistivity with higher SSP content, indicating improved current flow resistance. The microstructural properties showcased SSP's distinctive dispersion with few micro pores. The intermetallic phases confirmed their integration into the metal matrix by providing an enhancing adhesion and solid crystalline structure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

73-84

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. S. Adi, V. R. Malik, Friction stir processing of aluminum machining waste: carbon nanostructure reinforcements for enhanced composite performance-a comprehensive review, Materials and Manufacturing Processes (2024) 1–50.

DOI: 10.1080/10426914.2024.2425628

Google Scholar

[2] H. Guo, X. Zhou, Z. Liu, Advanced Lightweight Structural Materials for Automobiles: Properties, Manipulation, and Perspective, Science of Advanced Materials 16(5) (2024) 563–580.

DOI: 10.1166/sam.2024.4686

Google Scholar

[3] F. Khan, N. Hossain, J. J. Mim, S. M. Rahman, M. J. Iqbal, M. Billah, M. A. Chowdhury, Advances of composite materials in automobile applications–A review, Journal of Engineering Research (2024).

DOI: 10.1016/j.jer.2024.02.017

Google Scholar

[4] M. Laad, Agro waste reinforced composites: a solution for sustainable environment, Afyon Kocatepe University International Journal of Engineering Technology and Applied Sciences 2(1) (2019) 29–34.

Google Scholar

[5] K. O. Babaremu, O. O. Joseph, E. T. Akinlabi, T. C. Jen, O. P. Oladijo, Morphological investigation and mechanical behaviour of agrowaste reinforced aluminium alloy 8011 for service life improvement, Heliyon 6(11) (2020) e05484.

DOI: 10.1016/j.heliyon.2020.e05506

Google Scholar

[6] S. P. Dwivedi, P. Sharma, A. Saxena, Utilization of waste spent alumina catalyst and agro-waste rice husk ash as reinforcement materials with scrap aluminium alloy wheel matrix, Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 234(6) (2020) 543–552.

DOI: 10.1177/0954408920930634

Google Scholar

[7] A. A. Agbeleye, D. E. Esezobor, S. A. Balogun, J. O. Agunsoye, J. Solis, A. Neville, Tribological properties of aluminium-clay composites for brake disc rotor applications, Journal of King Saud University - Engineering Sciences 32(1) (2020) 21–28.

DOI: 10.1016/j.jksus.2017.09.002

Google Scholar

[8] O. O. Joseph, K. O. Babaremu, Agricultural waste as a reinforcement particulate for aluminum metal matrix composite (AMMCs): a review, Fibers 7(4) (2019) 33.

DOI: 10.3390/fib7040033

Google Scholar

[9] J. Jose, S. P. Dwivedi, S. Kumar, A. Kumar, Manufacture and characterization of a novel agro-waste based low cost metal matrix composite (MMC) by compocasting, Materials Research Express 5(6) (2018) 066530.

DOI: 10.1088/2053-1591/aac803

Google Scholar

[10] A. Sulaiman, S. P. Dwivedi, A. Saxena, S. Kumar, Hardness and tensile properties of prophylactic knee brace produced from cow bone and periwinkle shell composites, International Journal of Engineering Materials and Manufacture 4(2) (2019) 41–47.

DOI: 10.26776/ijemm.04.02.2019.01

Google Scholar

[11] S. M. Rangappa, S. Siengchin, H. N. Dhakal, Green-composites: Ecofriendly and sustainability, Applied Science and Engineering Progress 13(3) (2020) 183–184.

DOI: 10.14416/j.asep.2020.06.001

Google Scholar

[12] M. Ramesh, L. Rajeshkumar, D. Balaji, V. Bhuvaneswari, Green composite using agricultural waste reinforcement, in: Green Composites, Springer, Cham, 2021, p.21–34.

DOI: 10.1007/978-981-15-9643-8_2

Google Scholar

[13] N. F. M. Joharudin, N. A. Latif, M. S. Mustapa, N. A. Badarulzaman, M. F. Mahmod, Effect of burning temperature on rice husk silica as reinforcement of recycled aluminium chip AA7075, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 68(1) (2020) 125–132.

DOI: 10.37934/arfmts.68.1.125132

Google Scholar

[14] O. O. Joseph, J. O. Dirisu, J. Atiba, S. Ante, J. A. Ajayi, Mechanical and corrosive properties of AA7075 aluminium reinforced with rice husk ash particulates, Materials Research Express 10(11) (2023) 116520.

DOI: 10.1088/2053-1591/ad0dd3

Google Scholar

[15] F. A. Aluko, A. A. Adisa, B. B. A. Taiwo, A. M. Ogungbesan, H. A. Owojobi, Quantitative measurement of two breeds of snail, American Journal of Research Communication 2(5) (2014) 175–182.

Google Scholar

[16] O. M. Ikumapayi, E. T. Akinlabi, O. O. Abegunde, O. S. I. Fayomi, Electrochemical investigation of calcined agrowastes powders on friction stir processing of aluminium-based matrix composites, Materials Today: Proceedings 26 (2019) 3238–3245.

DOI: 10.1016/j.matpr.2020.02.906

Google Scholar

[17] I. G. Akande, O. O. Oluwole, O. S. I. Fayomi, Optimizing the defensive characteristics of mild steel via the electrodeposition of ZnSi3N4 reinforcing particles, Defence Technology 15(4) (2019) 526–532.

DOI: 10.1016/j.dt.2018.11.001

Google Scholar

[18] N. Ononiwu, C. Ozoegwu, N. Madushele, O. J. Akinribide, E. T. Akinlabi, Mechanical properties, tribology and electrochemical studies of Al/fly ash/eggshell aluminium matrix composite, Biointerface Research in Applied Chemistry 12 (2022) 4900–4919.

DOI: 10.33263/briac124.49004919

Google Scholar

[19] M. Karthikraja, K. Ramanathan, K. T. Loganathan, S. Selvaraj, Corrosion behaviour of SiC and Al2O3 reinforced Al 7075 hybrid aluminium matrix composites by weight loss and electrochemical methods, Journal of the Indian Chemical Society 100(5) (2023) 101002.

DOI: 10.1016/j.jics.2023.101002

Google Scholar

[20] N. E. Udoye, A. O. Inegbenebor, O. S. I. Fayomi, The analysis on electrical conductivity of AA6061/rice husk ash composites, Materials Today: Proceedings 43 (2021) 2245–2249.

DOI: 10.1016/j.matpr.2020.12.528

Google Scholar

[21] F. O. Edoziuno, A. A. Adediran, B. U. Odoni, O. G. Utu, A. Olayanju, Physico-chemical and morphological evaluation of palm kernel shell particulate reinforced aluminium matrix composites, Materials Today: Proceedings 38 (2021) 652–657.

DOI: 10.1016/j.matpr.2020.03.641

Google Scholar

[22] O. S. Fayomi, J. O. Atiba, Development of anti-corrosion, structural, and optoelectronic potential of Capsicum annuum-Doped AA6063 alloy for marine applications, Results in Surfaces and Interfaces 17 (2024) 100314.

DOI: 10.1016/j.rsurfi.2024.100314

Google Scholar

[23] A. Islam, S. P. Dwivedi, R. Yadav, V. K. Dwivedi, Development of Aluminium Based Composite by Utilizing Industrial Waste and Agro-Waste Material as Reinforcement Particles, Journal of The Institution of Engineers (India): Series D 102(2) (2021) 317–330.

DOI: 10.1007/s40033-021-00292-z

Google Scholar

[24] L. Venkatesh, T. V. Arjunan, K. Ravikumar, Microstructural characteristics and mechanical behaviour of aluminium hybrid composites reinforced with groundnut shell ash and B4C, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019) 1–13.

DOI: 10.1007/s40430-019-1800-1

Google Scholar

[25] S. P. Dwivedi, A. K. Srivastava, N. K. Maurya, R. Sahu, Microstructure and Mechanical Behaviour of Al/SiC/Agro-Waste RHA Hybrid Metal Matrix Composite, Journal of Composites and Advanced Materials 30(1) (2020).

DOI: 10.18280/rcma.300107

Google Scholar