Improved Performance of Hydrogen Sulfide Gas Sensor Based on Zinc Oxide Nanostructures Thermally Synthesized Doped with Silver Nanoparticles and Multi-Walled Carbon Nanotubes

Article Preview

Abstract:

The present work reports an approach of hydrothermal growth of ZnO nanorods, which simplifies the production of low cost films with controlled morphology for H2S gas sensor application. The prepared ZnO nanorods exhibit a hexagonal wurtzite phase analyzed by the X-ray diffraction analysis. The FTIR spectra provide information that the band located between 465-570 cm-1 corresponds to the stretching bond of Zn-O, which confirms the creation of ZnO. PL spectroscopic studies showed that the doping of Ag NPs and f-MWCNT in the ZnO matrix leads to the tuning of the bandgap. The SEM analysis showed the morphology of ZnO was the nanorods. The nanocomposites Ag/ZnO and F-MWCNT/ZnO which prepared, separately were tested for H2S gas at low (2 ppm) and high (50 ppm) concentrations. ZnO nanorods films showed a sensitivity of 14.71% for pure ZnO with a fast response time of 25.2 sec and recovery time of 33.3 sec towards 2 ppm H2S. For Ag NPs/ZnO and f-MWCNTs/ZnO, sensors showed a significant sensitivity of 27.95 and 42.39 % at ~150 °C with a response time and recovery time less than pure ZnO. The ZnO sensor showed a higher sensitivity at ~150 °C for both Ag NPs and F-MWCNTs at high gas concentration, where it was 35.085 and 58.89% respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

87-98

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Mirzaei, S. S. Kim, H. W. Kim, Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances, J. H. Mater, 357 (2018) 314-331.

DOI: 10.1016/j.jhazmat.2018.06.015

Google Scholar

[2] C. Fan, F. Sun, X. Wang, M. Majidi, Z. Huang, P. Kumar, B. Liu, Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers, J. M. Sci, 55, 18 (2020) 7702-7714.

DOI: 10.1007/s10853-020-04569-8

Google Scholar

[3] Wang, F. Jia, X. Wang, L. Hu, Y. Sun, G. Yin, T. Zhou, Z. Feng, P. Kumar, and B. Liu, Fabrication of ZnO nanoparticles modified by uniformly dispersed Ag nanoparticles: enhancement of gas sensing performance, ACS Omega, 5 (10), (2020) 5209-5218.

DOI: 10.1021/acsomega.9b04243

Google Scholar

[4] Z. S. Hosseini and A. Mortezaali, Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures, S. Actuators B Chem., 207 (2015) 865-871.

DOI: 10.1016/j.snb.2014.10.085

Google Scholar

[5] D. Ao, Z. Li, Y. Fu, Y. Tang, S. Yan, X. Zu, Heterostructured NiO/ZnO nanorod arrays with significantly enhanced H2S sensing performance, Nanomaterials, 9 (6) (2019) 900.

DOI: 10.3390/nano9060900

Google Scholar

[6] H. J. Abdul-Ameer, M. F. AL-Hilli, F. T. Ibrahim, The Performance of V2O5: Ag Nanoparticles as Thin Film and Bulk Pellet Sensor for NO2 and NH3 Detection, Iraqi J. of Sci., (2023) 630-642.

DOI: 10.24996/ijs.2023.64.2.12

Google Scholar

[7] M. O. Salman, M. A. Kadhim, A. A. Khalefa, CdO: SnO2 Composite UV-Assisted Room Temperature Ozone Sensor, Iraqi J. of Sci., (2023) 1190-1202.

DOI: 10.24996/ijs.2023.64.3.15

Google Scholar

[8] S.K. Soni, B. Thomas, V.R. Kar, A comprehensive review on CNTs and CNT-reinforced composites: syntheses, characteristics and applications, M. T. Commun, 25 (2020) 101546.

DOI: 10.1016/j.mtcomm.2020.101546

Google Scholar

[9] A. R. Querido, L. P. L. Gonçalves, Y. V Kolen'ko, M. F. R. Pereira, O. S. G. P. Soares, Enhancing the performance of Cu catalysts for the reverse water–gas shift reaction using N-doped CNT–ZnO composite as support, Cata. Sci. Technol., 13(12) (2023) 3606-3613.

DOI: 10.1039/d3cy00308f

Google Scholar

[10] Y. Seekaew, A. Wisitsoraat, C. Wongchoosuk, ZnO quantum dots decorated carbon nanotubes-based sensors for methanol detection at room temperature, Diam. Relat. Mater, 132 (2023) 109630.

DOI: 10.1016/j.diamond.2022.109630

Google Scholar

[11] K.M. Ibrahim and W.R. Saleh, ZnO nanostructures as low concentration NO2 gas sensor and impact the temperature on sensing properties, in AIP Conf. Proceedings, 2922 (1) (2024) 1-10.

DOI: 10.1063/5.0183161

Google Scholar

[12] R. Georgekutty, M. K. Seery, S. C. Pillai, A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, The J. of Phys. Chem. C, 112 (35) (2008) 13563-13570.

DOI: 10.1021/jp802729a

Google Scholar

[13] R. Vyas, S. Sharma, P. Gupta, AK. Prasad, AK. Tyagi, K. Sachdev, SK. Sharma., CNT ZnO nanocomposite thin films: O2 and NO2 sensing, Adv. Mat. Res., 585 (2012) 235-239.

DOI: 10.4028/www.scientific.net/amr.585.235

Google Scholar

[14] F. Özütok, I. K. Er, S. Acar, S. Demiri, Enhancing the Co gas sensing properties of ZnO thin films with the decoration of MWCNTs, J. of M. Sci.: Materials in Electronics, 30 (2019) 259-265.

DOI: 10.1007/s10854-018-0288-2

Google Scholar

[15] M. Samadi, H. A. Shivaee, M. Zanetti, A. Pourjavadi, A. Moshfegh, Visible light photocatalytic activity of novel MWCNT-doped ZnO electrospun nanofibers, J. Mol. Catal. A Chem., 359 (2012) 42-48.

DOI: 10.1016/j.molcata.2012.03.019

Google Scholar

[16] K. Vidhya, M. Saravanan, G. Bhoopathi, V. P. Devarajan, S. Subanya, Structural and optical characterization of pure and starch-capped ZnO quantum dots and their photocatalytic activity, Appl. Nanosci., 5 (2015) 235-243.

DOI: 10.1007/s13204-014-0312-7

Google Scholar

[17] A. Abdelkhalek and A. A. Al-Askar, Green synthesized ZnO nanoparticles mediated by Mentha spicata extract induce plant systemic resistance against Tobacco mosaic virus, Appl. Sci., 10 (15) (2020) 5054.

DOI: 10.3390/app10155054

Google Scholar

[18] S. Gayathri, OSN. Ghosh, S. Sathishkumar, S, Sudhakara, J. Jayaramudu, S.S Ray, A. K. Viswanath, Investigation of physicochemical properties of Ag doped ZnO nanoparticles prepared by chemical route, Appl. Sci. Lett., 1(1) (2015) 8-13.

Google Scholar

[19] K. Nagpal, L. Rapenne, D. S. Wragg, E. Rauwel, P. Rauwel, The role of CNT in surface defect passivation and UV emission intensification of ZnO nanoparticles, Nanomat. and Nanotech., 12 (2022) 1-10.

DOI: 10.1177/18479804221079419

Google Scholar

[20] V.V Multian, A.V. Uklein, A.N. Zaderko, V.O. Kozhanov, O.Yu Boldyrieva, R. P. Linnk, V.V. Lisnyak, V.Y. Gayvoronsky, Synthesis, characterization, luminescent and nonlinear optical responses of nanosized ZnO, Nanoscale Res. Lett., 12 (2017) 1-8.

DOI: 10.1186/s11671-017-1934-y

Google Scholar

[21] P. Rauwel, A. Galeckas, E. Rauwel, Enhancing the UV emission in ZnO-cnt hybrid nanostructures via the surface plasmon resonance of Ag nanoparticles, Nanomaterials, 11 (2) (2021) 452.

DOI: 10.3390/nano11020452

Google Scholar

[22] V. Kumar, J. Prakash, J.P. Singh, K. H. Chae, C. Swart, O.M. Ntwaeaborwa, H.C. Swart, V. Dutta, Role of silver doping on the defects related photoluminescence and antibacterial behaviour of zinc oxide nanoparticles, Coll. and Sur. B: Biointerfaces, 159 (2017) 191-199.

DOI: 10.1016/j.colsurfb.2017.07.071

Google Scholar

[23] A. Mortezaali and R. Moradi, The correlation between the substrate temperature and morphological ZnO nanostructures for H2S gas sensors, Sens. Actuators A Phys., 206 (2014) 30-34.

DOI: 10.1016/j.sna.2013.11.027

Google Scholar

[24] H. Huang, P. Xu, D. Zheng, C. Chen, X. Li, Sulfuration-desulfuration reaction sensing effect of intrinsic ZnO nanowires for high-performance H2S detection, J. Mater. Chem. A Mater, 3 (12) (2015) 6330-6339.

DOI: 10.1039/c4ta05963h

Google Scholar

[25] T. A. Saleh, M. A. Gondal, Q. A. Drmosh, Preparation of a MWCNT/ZnO nanocomposite and its photocatalytic activity for the removal of cyanide from water using a laser, Nanotechnology, 21 (49) (2010) 495705.

DOI: 10.1088/0957-4484/21/49/495705

Google Scholar

[26] Y.J. Kwon, A. Mirzaei, S.Y. Kang, M. S. Choi, J. H. Bang, S. S. Kim, H. W. Kim., Synthesis, characterization and gas sensing properties of ZnO-decorated MWCNTs, Appl. Surf. Sci., 413 (2017) 242-252.

DOI: 10.1016/j.apsusc.2017.03.290

Google Scholar

[27] C. Li, D. Li, G. Wan, J. Xu, W. Hou, Facile synthesis of concentrated gold nanoparticles with low size-distribution in water: temperature and pH controls, Nanoscale Res. Lett., 6(2011)1-10.

DOI: 10.1186/1556-276x-6-440

Google Scholar

[28] M.A. Franco, P.P. Conti, R.S. Andre, D.S. Correa, A review on chemiresistive ZnO gas sensors, Sens. and Actuators Rep., 4 (2022) 100100.

DOI: 10.1016/j.snr.2022.100100

Google Scholar