Improving Electrochemical Performance of Biomass-Derived Carbon Electrodes by Post-Carbonization Chemical Activation

Article Preview

Abstract:

In this study biowaste-derived carbon electrode materials with improved physical properties for supercapacitor application are synthesized. The chosen biomass is Desmostachya bipinnata, which was activated using a chemical method to improve previous results. The morphological and structural study of the synthesized activated carbon material is carried out using a multi-technique experimental approach revealing the presence of a micro-and nanoporosity and their effects on the physico-chemical performance of the electrode. In order to check the applicability of the process of synthesis, the activated carbon has been tested as electrode material working in a supercapacitor device subjected to cyclic voltammetry analysis. The synthesized material is able to deliver maximum specific capacitance of ~ 167.2 Fg-1, quite one order of magnitude higher than the same material characterized without activation. The results show that Desmostachya bipinnata is an important precursor for electrode materials for energy devices and deserves further studies to make possible its possible use in industrial production routes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

99-116

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Mater, vol. 7, no. 11, p.845–854, Nov. 2008.

DOI: 10.1038/nmat2297

Google Scholar

[2] A. Dutta, S. Mitra, M. Basak, and T. Banerjee, "A comprehensive review on batteries and supercapacitors: Development and challenges since their inception," Energy Storage, vol. 5, no. 1, p. e339, 2023.

DOI: 10.1002/est2.339

Google Scholar

[3] E. Pameté et al., "The Many Deaths of Supercapacitors: Degradation, Aging, and Performance Fading," Advanced Energy Materials, vol. 13, no. 29, p.2301008, 2023.

DOI: 10.1002/aenm.202301008

Google Scholar

[4] N. Vukajlović, D. Milićević, B. Dumnić, and B. Popadić, "Comparative analysis of the supercapacitor influence on lithium battery cycle life in electric vehicle energy storage," Journal of Energy Storage, vol. 31, p.101603, Oct. 2020.

DOI: 10.1016/j.est.2020.101603

Google Scholar

[5] Z. S. Iro, C. Subramani, and S. S. Dash, "A Brief Review on Electrode Materials for Supercapacitor," International Journal of Electrochemical Science, vol. 11, no. 12, p.10628–10643, Dec. 2016.

DOI: 10.20964/2016.12.50

Google Scholar

[6] L. Miao, Z. Song, D. Zhu, L. Li, L. Gan, and M. Liu, "Recent advances in carbon-based supercapacitors," Mater. Adv., vol. 1, no. 5, p.945–966, Aug. 2020.

DOI: 10.1039/D0MA00384K

Google Scholar

[7] Z. Zhai et al., "A review of carbon materials for supercapacitors," Materials & Design, vol. 221, p.111017, Sep. 2022.

DOI: 10.1016/j.matdes.2022.111017

Google Scholar

[8] M. Karnan, K. Subramani, N. Sudhan, N. Ilayaraja, and M. Sathish, "Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors," ACS Appl. Mater. Interfaces, vol. 8, no. 51, p.35191–35202, Dec. 2016.

DOI: 10.1021/acsami.6b10704

Google Scholar

[9] B. Jiang et al., "Biomass Straw-Derived Porous Carbon Synthesized for Supercapacitor by Ball Milling," Materials, vol. 15, no. 3, Art. no. 3, Jan. 2022.

DOI: 10.3390/ma15030924

Google Scholar

[10] F. Ersoy Atalay, M. Sener, and H. Kaya, "High- Performance Supercapacitor Electrode Based on NiFe Nanowire Networks/PEDOT:PSS," Materials Today: Proceedings, vol. 22, p.172–179, Jan. 2020.

DOI: 10.1016/j.matpr.2019.08.033

Google Scholar

[11] S. T. Senthilkumar, R. K. Selvan, and J. S. Melo, "The biomass derived activated carbon for supercapacitor," AIP Conference Proceedings, vol. 1538, no. 1, p.124–127, Jun. 2013.

DOI: 10.1063/1.4810042

Google Scholar

[12] R. Zou et al., "Highly specific triple-fragment aptamer for optical detection of cocaine," RSC Adv., vol. 2, no. 11, p.4636–4638, May 2012.

DOI: 10.1039/C2RA20307C

Google Scholar

[13] T. E. Odetoye, M. S. A. Bakar, and J. O. Titiloye, "Pyrolysis and Characterization of Jatropha Curcas Shell and Seed Coat | Nigerian Journal of Technological Development," Mar. 2019, Accessed: Jan. 18, 2025. [Online]. Available: https://journal.njtd.com.ng/index.php/njtd/article/view/307

DOI: 10.4314/njtd.v16i2.4

Google Scholar

[14] C. S. Yun, J. Taweekun, and M. S. Reza, "Preparation of activated carbon from biomass and its applications in water and gas purification, a review," Arab Journal of Basic and Applied Sciences---Taylor & Francis, Jan. 2020, Accessed: Jan. 18, 2025. [Online]. Available: https://www.academia.edu/43107041/Preparation_of_activated_carbon_from_biomass_and_its_applications_in_water_and_gas_purification_a_review

DOI: 10.1080/25765299.2020.1766799

Google Scholar

[15] K. S. Ukanwa, K. Patchigolla, R. Sakrabani, E. Anthony, and S. Mandavgane, "A Review of Chemicals to Produce Activated Carbon from Agricultural Waste Biomass," Sustainability, vol. 11, no. 22, Art. no. 22, Jan. 2019.

DOI: 10.3390/su11226204

Google Scholar

[16] H. Yang, S. Ye, J. Zhou, and T. Liang, "Biomass-Derived Porous Carbon Materials for Supercapacitor," Front. Chem., vol. 7, Apr. 2019.

DOI: 10.3389/fchem.2019.00274

Google Scholar

[17] "Role of biomass derived functionalized carbon as potential electrode materials for supercapacitor applications", Accessed: Jan. 18, 2025. [Online]. Available: https://mrforum.com/product/9781644903292-4/

Google Scholar

[18] W. Chu et al., "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, vol. 15, no. 8, Art. no. 8, Jan. 2022.

DOI: 10.3390/en15082954

Google Scholar

[19] M. Karnan, K. Subramani, P. K. Srividhya, and M. Sathish, "Electrochemical Studies on Corncob Derived Activated Porous Carbon for Supercapacitors Application in Aqueous and Non-aqueous Electrolytes," Electrochimica Acta, vol. 228, p.586–596, Feb. 2017.

DOI: 10.1016/j.electacta.2017.01.095

Google Scholar

[20] N. E. Benti et al., "The current status, challenges and prospects of using biomass energy in Ethiopia," Biotechnology for Biofuels, vol. 14, no. 1, p.209, Oct. 2021.

DOI: 10.1186/s13068-021-02060-3

Google Scholar

[21] P. Manasa, S. Sambasivam, and F. Ran, "Recent progress on biomass waste derived activated carbon electrode materials for supercapacitors applications—A review," Journal of Energy Storage, vol. 54, p.105290, Oct. 2022.

DOI: 10.1016/j.est.2022.105290

Google Scholar

[22] R. K. Maheshwari et al., "A Comprehensive Review on Phytochemical, Pharmacological, Dielectric and Therapeutic Attributes of Multifarious Rudraksha (Elaeocarpus Ganitrus Roxb.)," European Journal of Applied Sciences, vol. 9, no. 1, Art. no. 1, Feb. 2021.

DOI: 10.14738/aivp.91.9438

Google Scholar

[23] Komal, R. Singh, V. G. Parale, Y. Kumar, K. Mishra, and V. K. Shukla, "Studies on the ZnCl2 activated carbons derived from Sabal palmetto and Pterospermum acerifolium leaves for EDLC application," Biomass Conv. Bioref., vol. 14, no. 9, p.9995–10009, May 2024.

DOI: 10.1007/s13399-022-03088-7

Google Scholar

[24] C. Zhao, Q. Wang, Y. Lu, B. Li, L. Chen, and Y.-S. Hu, "High-temperature treatment induced carbon anode with ultrahigh Na storage capacity at low-voltage plateau," Science Bulletin, vol. 63, no. 17, p.1125–1129, Sep. 2018.

DOI: 10.1016/j.scib.2018.07.018

Google Scholar

[25] G. K. Gupta et al., "In Situ Fabrication of Activated Carbon from a Bio-Waste Desmostachya bipinnata for the Improved Supercapacitor Performance," Nanoscale Res Lett, vol. 16, no. 1, p.85, May 2021.

DOI: 10.1186/s11671-021-03545-8

Google Scholar

[26] M. D. Hossain, Q. Zhang, T. Cheng, W. A. Goddard, and Z. Luo, "Graphitization of low-density amorphous carbon for electrocatalysis electrodes from ReaxFF reactive dynamics," Carbon, vol. 183, p.940–947, Oct. 2021.

DOI: 10.1016/j.carbon.2021.07.080

Google Scholar

[27] B. Sun et al., "New complete assignment of X-ray powder diffraction patterns in graphitic carbon nitride using discrete Fourier transform and direct experimental evidence," Phys. Chem. Chem. Phys., vol. 19, no. 38, p.26072–26084, Oct. 2017.

DOI: 10.1039/C7CP05242A

Google Scholar

[28] Z. Q. Li, C. J. Lu, Z. P. Xia, Y. Zhou, and Z. Luo, "X-ray diffraction patterns of graphite and turbostratic carbon," Carbon, vol. 45, no. 8, p.1686–1695, Jul. 2007.

DOI: 10.1016/j.carbon.2007.03.038

Google Scholar

[29] F. B. Ilhami et al., "Developing zinc oxide and peanut shell-derived carbon star-shaped composite materials for effective photo-antibacterial treatment," Heliyon, vol. 10, no. 12, p. e32348, Jun. 2024.

DOI: 10.1016/j.heliyon.2024.e32348

Google Scholar

[30] N. S. Gultom, H. Abdullah, and D.-H. Kuo, "Phase transformation of bimetal zinc nickel oxide to oxysulfide photocatalyst with its exceptional performance to evolve hydrogen," Applied Catalysis B: Environmental, vol. 272, p.118985, Sep. 2020.

DOI: 10.1016/j.apcatb.2020.118985

Google Scholar

[31] Z. P. Zhang, M. Z. Rong, M. Q. Zhang, and C. Yuan, "Alkoxyamine with reduced homolysis temperature and its application in repeated autonomous self-healing of stiff polymers," Polym. Chem., vol. 4, no. 17, p.4648–4654, Jul. 2013.

DOI: 10.1039/C3PY00679D

Google Scholar

[32] C. Lu, S. Xu, and C. Liu, "The role of K2CO3 during the chemical activation of petroleum coke with KOH," Journal of Analytical and Applied Pyrolysis, vol. 87, no. 2, p.282–287, Mar. 2010.

DOI: 10.1016/j.jaap.2010.02.001

Google Scholar

[33] S. Zhang et al., "The role and mechanism of K2CO3 and Fe3O4 in the preparation of magnetic peanut shell based activated carbon," Powder Technology, vol. 295, p.152–160, Jul. 2016.

DOI: 10.1016/j.powtec.2016.03.034

Google Scholar

[34] I. Ozdemir, M. Şahin, R. Orhan, and M. Erdem, "Preparation and characterization of activated carbon from grape stalk by zinc chloride activation," Fuel Processing Technology, vol. 125, p.200–206, Sep. 2014.

DOI: 10.1016/j.fuproc.2014.04.002

Google Scholar

[35] S. Sangon, K. Kotebantao, T. Suyala, Y. Ngernyen, A. J. Hunt, and N. Supanchaiyamat, "ZnCl2 activated mesoporous carbon from rice straw: optimization of its synthetic process and its application as a highly efficient adsorbent for amoxicillin," Environ. Sci.: Water Res. Technol., vol. 10, no. 6, p.1389–1405, May 2024.

DOI: 10.1039/D4EW00171K

Google Scholar

[36] P. Lauf et al., "Be aware of the effect of electrode activation and morphology on its performance in gas diffusion electrode setups," Journal of Power Sources, vol. 623, p.235352, Dec. 2024.

DOI: 10.1016/j.jpowsour.2024.235352

Google Scholar

[37] S. Surendhiran et al., "Bio electrochemical and in-vitro bioactivity evaluation of Araucaria columnaris interceded α-MoO3 nano rods fused chitosan-sodium alginate scaffold for tissue engineering applications," Journal of Molecular Structure, vol. 1328, p.141384, Apr. 2025.

DOI: 10.1016/j.molstruc.2025.141384

Google Scholar

[38] C. D. Zappielo et al., "Solid Phase Extraction to On-Line Preconcentrate Trace Cadmium Using Chemically Modified Nano-Carbon Black with 3-Mercaptopropyltrimethoxysilane," Journal of the Brazilian Chemical Society, 2016.

DOI: 10.5935/0103-5053.20160052

Google Scholar

[39] K. Shi, M. Ren, and I. Zhitomirsky, "Activated Carbon-Coated Carbon Nanotubes for Energy Storage in Supercapacitors and Capacitive Water Purification," ACS Sustainable Chem. Eng., vol. 2, no. 5, p.1289–1298, May 2014.

DOI: 10.1021/sc500118r

Google Scholar

[40] S. Singh et al., "Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications," N Biotechnol, vol. 30, no. 6, p.656–665, Sep. 2013.

DOI: 10.1016/j.nbt.2013.05.002

Google Scholar

[41] M. Wu et al., "Synthesis of starch-derived mesoporous carbon for electric double layer capacitor," Chemical Engineering Journal, vol. 245, p.166–172, Jun. 2014.

DOI: 10.1016/j.cej.2014.02.023

Google Scholar

[42] C. Zhan et al., "Flour food waste derived activated carbon for high-performance supercapacitors," RSC Advances, vol. 6, no. 92, p.89391–89396, 2016.

DOI: 10.1039/C6RA18056F

Google Scholar

[43] V. Ruiz, C. Blanco, E. Raymundo-Piñero, V. Khomenko, F. Béguin, and R. Santamaría, "Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors," Electrochimica Acta, vol. 52, no. 15, p.4969–4973, Apr. 2007.

DOI: 10.1016/j.electacta.2007.01.071

Google Scholar

[44] A. Albaiz, M. Alsaidan, A. Alzahrani, H. Almoalim, A. Rinaldi, and A. S. Jalilov, "Active Carbon-Based Electrode Materials from Petroleum Waste for Supercapacitors," C, vol. 9, no. 1, Art. no. 1, Mar. 2023.

DOI: 10.3390/c9010004

Google Scholar

[45] S. Ding, D. Tong, X. Pan, and L. Zhao, "Heterogeneous layered bimetallic hydroxide electrode material for high-rate solid-state supercapacitor," Journal of Alloys and Compounds, vol. 1010, p.177985, Jan. 2025.

DOI: 10.1016/j.jallcom.2024.177985

Google Scholar

[46] N. Singh et al., "Concentration dependent electrochemical performance of aqueous choline chloride electrolyte," Materials Today: Proceedings, vol. 53, p.161–167, Jan. 2022.

DOI: 10.1016/j.matpr.2021.12.486

Google Scholar

[47] N. Singh et al., "Preparation of electrochemically stable choline chloride-sugar based sustainable electrolytes and study of effect of water on their electrochemical behaviour," Materials Today: Proceedings, vol. 53, p.179–184, Jan. 2022.

DOI: 10.1016/j.matpr.2021.12.496

Google Scholar

[48] M. G. Kumar Santosh J. Uke, Yogesh Kumar, Sweta Sharma, Ashwani Kumar, Pushpa Singh, Amit Saxena, Bhaskar Bhattacharya, Yogesh, "Rechargeable Batteries with Nanotechnology," in Applications of Nanomaterials for Energy Storage Devices, CRC Press, 2022.

DOI: 10.1201/9781003216308-10

Google Scholar

[49] B. Arumugam, G. Mayakrishnan, S. K. Subburayan Manickavasagam, S. C. Kim, and R. Vanaraj, "An Overview of Active Electrode Materials for the Efficient High-Performance Supercapacitor Application," Crystals, vol. 13, no. 7, Art. no. 7, Jul. 2023.

DOI: 10.3390/cryst13071118

Google Scholar

[50] A. Ray, D. Korkut, and B. Saruhan, "Efficient Flexible All-Solid Supercapacitors with Direct Sputter-Grown Needle-Like Mn/MnOx@Graphite-Foil Electrodes and PPC-Embedded Ionic Electrolytes," Nanomaterials, vol. 10, no. 9, p.1768, Sep. 2020.

DOI: 10.3390/nano10091768

Google Scholar

[51] Y. Kumar et al., "Advancement and current scenario of engineering and design in transparent supercapacitors: electrodes and electrolyte," J Nanopart Res, vol. 23, no. 5, p.119, May 2021.

DOI: 10.1007/s11051-021-05221-5

Google Scholar

[52] Y.-T. Lu, W.-Y. Jao, C.-W. Tai, and C.-C. Hu, "A comprehensive review on the electrochemical activation for non-aqueous carbon-based supercapacitors," Journal of the Taiwan Institute of Chemical Engineers, vol. 154, p.104978, Jan. 2024.

DOI: 10.1016/j.jtice.2023.104978

Google Scholar

[53] M. K. Gupta, Y. Kumar, and V. K. Shukla, "Hydrothermal Synthesis of a Layered ZnO@MnO2 Nanocomposite for High-Performance Supercapacitor Electrodes," J. Electron. Mater., vol. 53, no. 4, p.2050–2061, Apr. 2024.

DOI: 10.1007/s11664-024-10951-y

Google Scholar

[54] S. Mehrotra et al., "Functional biochar derived from Desmostachya bipinnata for the application in energy storage/conversion devices," Biomass Conv. Bioref., Apr. 2023.

DOI: 10.1007/s13399-023-03991-7

Google Scholar

[55] S. J. Uke, S. P. Mardikar, A. Kumar, Y. Kumar, M. Gupta, and Y. Kumar, "A review of π-conjugated polymer-based nanocomposites for metal-ion batteries and supercapacitors," Royal Society Open Science, vol. 8, no. 10, p.210567, Oct. 2021.

DOI: 10.1098/rsos.210567

Google Scholar

[56] L. Zhang et al., "Recent advances in electrochemical impedance spectroscopy for solid-state batteries," Energy Storage Materials, vol. 69, p.103378, May 2024.

DOI: 10.1016/j.ensm.2024.103378

Google Scholar

[57] Komal, A. Kumar, Y. Kumar, and V. K. Shukla, "Parthenium hysterophorus derived activated carbon for EDLC device application," J Mater Sci: Mater Electron, vol. 34, no. 27, p.1880, Sep. 2023.

DOI: 10.1007/s10854-023-11309-6

Google Scholar

[58] M. K. Gupta, Y. Kumar, N. Sonnathi, and S. K. Sharma, "Synthesis of MnO2 nanostructure and its electrochemical studies with ratio optimization of ZnO," Ionics, May 2023.

DOI: 10.1007/s11581-023-04998-w

Google Scholar

[59] H. Zhang et al., "Ternary molybdenum oxyphosphide based hybrid nanotubes boosts sodium-ion diffusion kinetics enabled through oxygen-deficient modulation," Nano Energy, vol. 135, p.110625, Mar. 2025.

DOI: 10.1016/j.nanoen.2024.110625

Google Scholar

[60] S. Ghosh et al., "Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes," Sci Rep, vol. 9, no. 1, p.16315, Nov. 2019.

DOI: 10.1038/s41598-019-52006-x

Google Scholar

[61] E. G. Calvo, F. Lufrano, P. Staiti, A. Brigandì, A. Arenillas, and J. A. Menéndez, "Optimizing the electrochemical performance of aqueous symmetric supercapacitors based on an activated carbon xerogel," Journal of Power Sources, vol. 241, p.776–782, Nov. 2013.

DOI: 10.1016/j.jpowsour.2013.03.065

Google Scholar

[62] K. Xiao et al., "Effect of Ni and Nb Elements on Corrosion Resistance and Behavior of TC4 Alloy in Hydrochloric Acid," Materials, vol. 18, no. 2, Art. no. 2, Jan. 2025.

DOI: 10.3390/ma18020246

Google Scholar

[63] M. Lahouij et al., "Influence of carbon incorporation on the microstructure, morphology, hardness, Young modulus and corrosion resistance of TiAlCN coatings deposited via reactive-HiPIMS," Applied Surface Science, vol. 686, p.162115, Mar. 2025.

DOI: 10.1016/j.apsusc.2024.162115

Google Scholar

[64] B. N. M. Dolah et al., "A method to produce binderless supercapacitor electrode monoliths from biomass carbon and carbon nanotubes," Materials Research Bulletin, vol. 60, p.10–19, Dec. 2014.

DOI: 10.1016/j.materresbull.2014.08.013

Google Scholar

[65] A. Bain, K. Ghosh, K. Tumashevich, N. L. Prisle, and B. R. Bzdek, "Partitioning of ionic surfactants in aerosol droplets containing glutaric acid, sodium chloride, or sea salts," EGUsphere, p.1–21, Jan. 2025.

DOI: 10.5194/egusphere-2024-3993

Google Scholar

[66] S. Thior et al., "Influence of water-in-salt electrolytes on the electrochemical performance of porous N and S co-doped carbon electrodes in supercapacitors," New Journal of Chemistry, 2025.

DOI: 10.1039/D4NJ04507F

Google Scholar

[67] R. Kant, A. Ranjan, A. Srivastava, and S. Sonkar, "Ultrasound Doppler velocimetry study of magnetoconvection on the heated vertical flat plate at low Hartmann number," International Communications in Heat and Mass Transfer, vol. 160, p.108297, Jan. 2025.

DOI: 10.1016/j.icheatmasstransfer.2024.108297

Google Scholar

[68] J. Xu et al., "Investigation of ion desolvation in aqueous electrolyte with carbon electrode via electrochemical in-situ Raman," Applied Surface Science, vol. 670, p.160551, Oct. 2024.

DOI: 10.1016/j.apsusc.2024.160551

Google Scholar

[69] C. Li et al., "Improvement in capacitive and Zn-storage performance of asphalt-based N, O, and Mo-doped porous carbon by Mo-catalytic oxidative modification," Separation and Purification Technology, vol. 355, p.129641, Mar. 2025.

DOI: 10.1016/j.seppur.2024.129641

Google Scholar

[70] G. Liang, G. Qin, P. Cao, H. Wang, and J. Wang, "Numerical investigation of sidewall penetration in narrow gap oscillating laser welding process," Optics & Laser Technology, vol. 170, p.110282, Mar. 2024.

DOI: 10.1016/j.optlastec.2023.110282

Google Scholar

[71] X. Wang et al., "All biomass-derived autogenous nitrogen-doped porous carbon with pseudo-graphitic structure for advanced lithium-ion battery anodes," Journal of Power Sources, vol. 629, p.235980, Feb. 2025.

DOI: 10.1016/j.jpowsour.2024.235980

Google Scholar

[72] H. Palani and A. Rastogi, "Effect of annealing temperature on structural and electrochemical behaviour on MgFe2O4 as electrode material in neutral aqueous electrolyte for supercapacitors," Nanotechnology, vol. 35, no. 17, p.175401, Feb. 2024.

DOI: 10.1088/1361-6528/ad1e96

Google Scholar

[73] Y. Kumar et al., "Triethanolamine–ethoxylate (TEA-EO) assisted hydrothermal synthesis of hierarchical β-MnO2 nanorods: effect of surface morphology on capacitive performance," Nano Express, vol. 2, no. 4, p.040008, Dec. 2021.

DOI: 10.1088/2632-959x/abef21

Google Scholar

[74] M. Segale, O. J. Fakayode, T. Mokrani, G. J. Summers, B. M. Mothudi, and R. Sigwadi, "Hydrogen evolution on graphite/sulfonated polyether ether ketone (SPEEK) surface using zirconium oxide-stabilized cerium oxide nanocomposites," Journal of Power Sources, vol. 629, p.235975, Feb. 2025.

DOI: 10.1016/j.jpowsour.2024.235975

Google Scholar

[75] M. Biswal, A. Banerjee, M. Deo, and S. Ogale, "From dead leaves to high energy density supercapacitors," Energy Environ. Sci., vol. 6, no. 4, p.1249–1259, Mar. 2013.

DOI: 10.1039/C3EE22325F

Google Scholar

[76] P. Makkar and N. N. Ghosh, "Facile Synthesis of MnFe2O4 Hollow Sphere-Reduced Graphene Oxide Nanocomposites as Electrode Materials for All-Solid-State Flexible High-Performance Asymmetric Supercapacitors," ACS Appl. Energy Mater., vol. 3, no. 3, p.2653–2664, Mar. 2020.

DOI: 10.1021/acsaem.9b02360

Google Scholar

[77] P. A. Basnayaka, M. K. Ram, L. Stefanakos, and A. Kumar, "Graphene/Polypyrrole Nanocomposite as Electrochemical Supercapacitor Electrode: Electrochemical Impedance Studies," Graphene, vol. 2, no. 2, Art. no. 2, Apr. 2013.

DOI: 10.4236/graphene.2013.22012

Google Scholar

[78] A. Viswanathan and A. N. Shetty, "Single step synthesis of rGO, copper oxide and polyaniline nanocomposites for high energy supercapacitors," Electrochimica Acta, vol. 289, p.204–217, Nov. 2018.

DOI: 10.1016/j.electacta.2018.09.033

Google Scholar

[79] J. R. Rajabathar, S. Manoharan, J. V. J, H. A. Al-Lohedan, and P. Arunachalam, "Synthesis of porous carbon nanostructure formation from peel waste for low cost flexible electrode fabrication towards energy storage applications," Journal of Energy Storage, vol. 32, p.101735, Dec. 2020.

DOI: 10.1016/j.est.2020.101735

Google Scholar

[80] A. Muzaffar, M. B. Ahamed, and C. M. Hussain, "Green supercapacitors: Latest developments and perspectives in the pursuit of sustainability," Renewable and Sustainable Energy Reviews, vol. 195, p.114324, May 2024.

DOI: 10.1016/j.rser.2024.114324

Google Scholar

[81] B. Padha, S. Verma, A. Ahmed, M. P. Chavhan, P. Mahajan, and S. Arya, "From trash to treasure: crafting electrochemical supercapacitors with recycled waste materials," Prog. Energy, vol. 6, no. 1, p.012005, Jan. 2024.

DOI: 10.1088/2516-1083/ad139c

Google Scholar

[82] L. U. Okonye and J. Ren, "A comprehensive review of PETW recycling for supercapacitor applications," Heliyon, vol. 10, no. 15, Aug. 2024.

DOI: 10.1016/j.heliyon.2024.e35285

Google Scholar

[83] V. Molahalli, A. Sharma, K. Bijapur, G. Soman, N. Chattham, and G. Hegde, "Low-cost bio-waste carbon nanocomposites for sustainable electrochemical devices: A systematic review," Materials Today Communications, vol. 38, p.108034, Mar. 2024.

DOI: 10.1016/j.mtcomm.2024.108034

Google Scholar

[84] S. M. Mousavi et al., "Recent advances in energy storage with graphene oxide for supercapacitor technology," Sustainable Energy Fuels, vol. 7, no. 21, p.5176–5197, Oct. 2023.

DOI: 10.1039/D3SE00867C

Google Scholar

[85] K. K. R. Reddygunta, R. Beresford, L. Šiller, L. Berlouis, and A. Ivaturi, "Activated Carbon Utilization from Corn Derivatives for High-Energy-Density Flexible Supercapacitors," Energy Fuels, vol. 37, no. 23, p.19248–19265, Dec. 2023.

DOI: 10.1021/acs.energyfuels.3c01925

Google Scholar

[86] R. Yuksel and N. Karakehya, "High energy density biomass-derived activated carbon materials for sustainable energy storage," Carbon, vol. 221, p.118934, Mar. 2024.

DOI: 10.1016/j.carbon.2024.118934

Google Scholar

[87] T. Manimekala, R. Sivasubramanian, S. Karthikeyan, and G. Dharmalingam, "Biomass derived activated carbon-based high-performance electrodes for supercapacitor applications," J Porous Mater, vol. 30, no. 1, p.289–301, Feb. 2023.

DOI: 10.1007/s10934-022-01338-7

Google Scholar

[88] K. Yu, H. Zhu, H. Qi, and C. Liang, "High surface area carbon materials derived from corn stalk core as electrode for supercapacitor," Diamond and Related Materials, vol. 88, p.18–22, Sep. 2018.

DOI: 10.1016/j.diamond.2018.06.018

Google Scholar

[89] Komal, R. Singh, V. G. Parale, Y. Kumar, K. Mishra, and V. K. Shukla, "Studies on the ZnCl2 activated carbons derived from Sabal palmetto and Pterospermum acerifolium leaves for EDLC application," Biomass Conv. Bioref., Jul. 2022.

DOI: 10.1007/s13399-022-03088-7

Google Scholar

[90] Y. Ou, C. Peng, J. Lang, D. Zhu, and X. Yan, "Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor," New Carbon Materials, vol. 29, no. 3, p.209–215, Jun. 2014.

DOI: 10.1016/S1872-5805(14)60135-9

Google Scholar

[91] M. Sivachidambaram et al., "Preparation and characterization of activated carbon derived from the Borassus flabellifer flower as an electrode material for supercapacitor applications," New J. Chem., vol. 41, no. 10, p.3939–3949, May 2017.

DOI: 10.1039/C6NJ03867K

Google Scholar

[92] A. Adan-Mas, L. Alcaraz, P. Arévalo-Cid, Félix. A. López-Gómez, and F. Montemor, "Coffee-derived activated carbon from second biowaste for supercapacitor applications," Waste Management, vol. 120, p.280–289, Feb. 2021.

DOI: 10.1016/j.wasman.2020.11.043

Google Scholar

[93] E. Ciftyurek et al., "Performance of activated carbons synthesized from fruit dehydration biowastes for supercapacitor applications," Environ Prog Sustainable Energy, vol. 38, no. 3, May 2019.

DOI: 10.1002/ep.13030

Google Scholar