Evaluating Chemical Analysis Techniques: A Comparative Study of SEM-EDX and Optical Emission Spectroscopy

Article Preview

Abstract:

This study presents a comparative evaluation of two widely used chemical analysis techniques: scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX) and spectrophotometry. SEM-EDX is renowned for its ability to provide qualitative and quantitative elemental analysis at microscopic levels, making it a powerful tool for material characterization. On the other hand, optical emission spectroscopy, which analyses the light emitted by excited atoms, is highly effective for the rapid and precise quantification of elements in various sample types, especially metals and alloys. The research aims to assess the effectiveness, accuracy, and applicability of these techniques, by analysing identical samples (welding wire) using both SEM-EDX and spectroscopy, this study highlights the strengths and limitations of each method. Key parameters such as sensitivity, detection and data interpretation are compared to provide a comprehensive understanding of their performance in chemical analysis.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

107-117

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Gupta, S., Omar, T., & Muzzio, F. J. (2022). SEM/EDX and Raman chemical imaging of pharmaceutical tablets: A comparison of tablet surface preparation and analysis methods. International Journal of Pharmaceutics, 611, 121331.

DOI: 10.1016/j.ijpharm.2021.121331

Google Scholar

[2] Dias, F. J., Fuentes, R., Navarro, P., Weber, B., & Borie, E. (2020). Assessment of the chemical composition in different dental implant types: An analysis through EDX system. Coatings, 10(9), 882.

DOI: 10.3390/coatings10090882

Google Scholar

[3] Michalak, I., Mironiuk, M., & Marycz, K. (2018). A comprehensive analysis of biosorption of metal ions by macroalgae using ICP-OES, SEM-EDX and FTIR techniques. PLoS One, 13(10).

DOI: 10.1371/journal.pone.0205590

Google Scholar

[4] Pacella, A., Ballirano, P., & Cametti, G. (2016). Quantitative chemical analysis of erionite fibres using a micro-analytical SEM-EDX method. European Journal of Mineralogy, 28(2), 257-264.

DOI: 10.1127/ejm/2015/0027-2497

Google Scholar

[5] Zadora, G., & Brożek-Mucha, Z. (2003). SEM–EDX—a useful tool for forensic examinations. Materials chemistry and physics, 81(2-3), 345-348.

DOI: 10.1016/s0254-0584(03)00018-x

Google Scholar

[6] Stefaniak, E. A., Buczynska, A., Novakovic, V., Kuduk, R., & Van Grieken, R. (2009, April). Determination of chemical composition of individual airborne particles by SEM/EDX and micro-Raman spectrometry: a review. In Journal of Physics: Conference Series (Vol. 162, No. 1, p.012019). IOP Publishing.

DOI: 10.1088/1742-6596/162/1/012019

Google Scholar

[7] Fay, F., Linossier, I., Langlois, V., Haras, D., & Vallee-Rehel, K. (2005). SEM and EDX analysis: two powerful techniques for the study of antifouling paints. Progress in Organic Coatings, 54(3), 216-223.

DOI: 10.1016/j.porgcoat.2005.05.005

Google Scholar

[8] Gniadek, M., & Dąbrowska, A. (2019). The marine nano-and microplastics characterisation by SEM-EDX: the potential of the method in comparison with various physical and chemical approaches. Marine Pollution Bulletin, 148, 210-216.

DOI: 10.1016/j.marpolbul.2019.07.067

Google Scholar

[9] Lu, H., Liu, B., Zhang, Y., Ye, J., & Yan, C. (2014). Comparing analysis of elements sub-cellular distribution in Kandelia obovata between SEM-EDX and chemical extraction. Aquatic botany, 112, 10-15.

DOI: 10.1016/j.aquabot.2013.07.007

Google Scholar

[10] Nuspl, M., Wegscheider, W., Angeli, J., Posch, W., & Mayr, M. (2004). Qualitative and quantitative determination of micro-inclusions by automated SEM/EDX analysis. Analytical and bioanalytical chemistry, 379, 640-645.

DOI: 10.1007/s00216-004-2528-y

Google Scholar

[11] Falcone, R., Sommariva, G., & Verità, M. (2006). WDXRF, EPMA and SEM/EDX quantitative chemical analyses of small glass samples. Microchimica Acta, 155, 137-140.

DOI: 10.1007/s00604-006-0531-z

Google Scholar

[12] Velásquez, P., Leinen, D., Pascual, J., Ramos-Barrado, J. R., Grez, P., Gomez, H., ... & Cordova, R. (2005). A chemical, morphological, and electrochemical (XPS, SEM/EDX, CV, and EIS) analysis of electrochemically modified electrode surfaces of natural chalcopyrite (CuFeS2) and pyrite (FeS2) in alkaline solutions. The Journal of Physical Chemistry B, 109(11), 4977-4988.

DOI: 10.1021/jp048273u

Google Scholar

[13] Khan, S. R., Sharma, B., Chawla, P. A., & Bhatia, R. (2022). Inductively coupled plasma optical emission spectrometry (ICP-OES): a powerful analytical technique for elemental analysis. Food Analytical Methods, 1-23.

DOI: 10.1007/s12161-021-02148-4

Google Scholar

[14] Akatsuka, H. (2019). Optical Emission Spectroscopic (OES) analysis for diagnostics of electron density and temperature in non-equilibrium argon plasma based on collisional-radiative model. Advances in Physics: X, 4(1), 1592707.

DOI: 10.1080/23746149.2019.1592707

Google Scholar

[15] Mackus, A. J. M., Heil, S. B. S., Langereis, E., Knoops, H. C. M., Van de Sanden, M. C. M., & Kessels, W. M. M. (2010). Optical emission spectroscopy as a tool for studying, optimizing, and monitoring plasma-assisted atomic layer deposition processes. Journal of Vacuum Science & Technology A, 28(1), 77-87.

DOI: 10.1116/1.3256227

Google Scholar

[16] Ghosh, S., Prasanna, V. L., Sowjanya, B., Srivani, P., Alagaraja, M., & Banji, D. (2013). Inductively coupled plasma–optical emission spectroscopy: a review. Asian Journal of Pharmaceutical Analysis, 3(1), 24-33.

Google Scholar

[17] Xiong, Q., Nikiforov, A. Y., González, M. A., Leys, C., & Lu, X. P. (2012). Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy. Plasma Sources Science and Technology, 22(1), 015011.

DOI: 10.1088/0963-0252/22/1/015011

Google Scholar

[18] Aragón, C., & Aguilera, J. A. (2008). Characterization of laser induced plasmas by optical emission spectroscopy: A review of experiments and methods. Spectrochimica Acta Part B: Atomic Spectroscopy, 63(9), 893-916.

DOI: 10.1016/j.sab.2008.05.010

Google Scholar

[19] Janis, D., Jönsson, P. G., Appell, A., & Janis, J. (2016). Application of pulse distribution analysis with optical emission spectroscopy (PDA/OES) method during production of duplex stainless steel. Ironmaking & steelmaking, 43(2), 121-129.

DOI: 10.1179/1743281215y.0000000056

Google Scholar

[20] Donati, G. L., Amais, R. S., & Williams, C. B. (2017). Recent advances in inductively coupled plasma optical emission spectrometry. Journal of Analytical Atomic Spectrometry, 32(7), 1283-1296.

DOI: 10.1039/c7ja00103g

Google Scholar

[21] Chertok, B., Cole, A. J., David, A. E., & Yang, V. C. (2010). Comparison of electron spin resonance spectroscopy and inductively-coupled plasma optical emission spectroscopy for biodistribution analysis of iron-oxide nanoparticles. Molecular pharmaceutics, 7(2), 375-385.

DOI: 10.1021/mp900161h

Google Scholar