[1]
M.A. Golberg, The method of fundamental solutions for Poisson's equation, Eng. Anal. Bound. Elem. 16 (1995) 205-213.
Google Scholar
[2]
C.S. Chen, A. Karageorghis, Y. Li, On choosing the location of the sources in the MFS, Numer. Algorithms 72 (2016) 107-130.
DOI: 10.1007/s11075-015-0036-0
Google Scholar
[3]
C.M. Fan, Y.K. Huang, C.S. Chen, S.R. Kuo, Localized method of fundamental solutions for solving two-dimensional Laplace and biharmonic equations, Eng. Anal. Bound. Elem. 101 (2019) 188-197
DOI: 10.1016/j.enganabound.2018.11.008
Google Scholar
[4]
J. Zhang, C. Yang, H. Zheng, C.M. Fan, M.F. Fu, The localized method of fundamental solutions for 2D and 3D inhomogeneous problems, Math. Comput. Simulat. 200 (2022) 504-524.
DOI: 10.1016/j.matcom.2022.04.024
Google Scholar
[5]
S. Liu, P.W. Li, C.M. Fan, Y.Gu, Y, Localized method of fundamental solutions for two- and three-dimensional transient convection-diffusion-reaction equations, Eng. Anal. Bound. Elem. 124 (2021) 237-244.
DOI: 10.1016/j.enganabound.2020.12.023
Google Scholar
[6]
C. G´asp´ar, A localized version of the method of fundamental solutions in a multi-level context, Period. Polytechn.: Civ. Eng. 67(3) (2023) 716-724.
Google Scholar
[7]
P.L. Lions, On the Schwarz alternating method I., in: R. Glowinski, J.H. Golub, G.A. Meurant, J. Periaux (Eds.), Domain Decomposition Methods for Partial Differential Equations, SIAM, Philadelphia 1988, pp.1-42.
DOI: 10.2307/2008749
Google Scholar
[8]
C. G´asp´ar, Application of the localized method of fundamental solutions to heat transfer problems, J. Phys.: Conf. Ser. 2766 012157 (2024).
DOI: 10.1088/1742-6596/2766/1/012157
Google Scholar
[9]
C. G´asp´ar, A multi-level technique for the method of fundamental solutions without regularization and desingularization, Eng. Anal. Bound. Elem. 103 (2019) 145-159.
DOI: 10.1016/j.enganabound.2019.03.006
Google Scholar
[10]
K. St¨uben, U. Trottenberg, Multigrid methods: Fundamental algorithms, model problem analysis and applications, in: W. Hackbusch, U. Trottenberg (Eds.), Multigrid Methods. Lecture Notes in Mathematics, Vol. 960. Springer, Berlin, Heidelberg 1982, pp.1-176.
DOI: 10.1007/bfb0069928
Google Scholar
[11]
C. G´asp´ar, Multi-level biharmonic and bi-Helmholtz interpolation with application to the boundary element method. Eng. Anal. Bound. Elem. 24(7-8) (2000) 559-573.
DOI: 10.1016/s0955-7997(00)00036-9
Google Scholar