[1]
Z. Meng, G. Shi, F. Wang, Vibration response and fault characteristics analysis of gear based on time-varying mesh stiffness, Mech Mach Theory 148 (2020) 103786.
DOI: 10.1016/J.MECHMACHTHEORY.2020.103786
Google Scholar
[2]
J.D.M. Marafona, P.M.T. Marques, R.C. Martins, J.H.O. Seabra, Mesh stiffness models for cylindrical gears: A detailed review, Mech Mach Theory 166 (2021) 104472.
DOI: 10.1016/J.MECHMACHTHEORY.2021.104472
Google Scholar
[3]
A. Oreavbiere, M. Khan, Mathematical Complexities in Modelling Damage in Spur Gears, Machines 12 (2024).
DOI: 10.3390/machines12050346
Google Scholar
[4]
D.C. H Yang Assistant Professor Assoc Mem ASME J Y Lin, Hertzian Damping, Tooth Friction and Bending Elasticity in Gear Impact Dynamics, 1987. http://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/109/2/189/5560695/189_1.pdf.
DOI: 10.1115/1.3267437
Google Scholar
[5]
Xinhao. Tian, Dynamic simulation for system response of gearbox including localized gear faults, Library and Archives Canada = Bibliothèque et Archives Canada, 2005.
Google Scholar
[6]
X. Liang, M.J. Zuo, Z. Feng, L. Liu, A mesh stiffness evaluation model to reflect tooth pitting growth of a pair of external spur gears, in: Proceedings of 2016 Prognostics and System Health Management Conference, PHM-Chengdu 2016, Institute of Electrical and Electronics Engineers Inc., 2017.
DOI: 10.1109/PHM.2016.7819811
Google Scholar
[7]
X. Liang, H. Zhang, L. Liu, M.J. Zuo, The influence of tooth pitting on the mesh stiffness of a pair of external spur gears, Mech Mach Theory 106 (2016) 1–15.
DOI: 10.1016/J.MECHMACHTHEORY.2016.08.005
Google Scholar
[8]
W. Liu, R. Zhu, W. Zhou, Y. Shang, Probability distribution model of gear time-varying mesh stiffness with random pitting of tooth surface, Eng Fail Anal 130 (2021).
DOI: 10.1016/j.engfailanal.2021.105782
Google Scholar
[9]
T. Chen, Y. Wang, Z. Chen, A novel distribution model of multiple teeth pits for evaluating time-varying mesh stiffness of external spur gears, Mech Syst Signal Process 129 (2019) 479–501.
DOI: 10.1016/J.YMSSP.2019.04.029
Google Scholar
[10]
J. Hou, S. Yang, Q. Li, Y. Liu, Effect of a Novel Tooth Pitting Model on Mesh Stiffness and Vibration Response of Spur Gears, Mathematics 10 (2022).
DOI: 10.3390/math10030471
Google Scholar
[11]
T. Chen, Y. Wang, Z. Chen, A novel distribution model of multiple teeth pits for evaluating time-varying mesh stiffness of external spur gears, Mech Syst Signal Process 129 (2019) 479–501.
DOI: 10.1016/J.YMSSP.2019.04.029
Google Scholar
[12]
Y. Lei, Z. Liu, D. Wang, X. Yang, H. Liu, J. Lin, A probability distribution model of tooth pits for evaluating time-varying mesh stiffness of pitting gears, Mech Syst Signal Process 106 (2018) 355–366.
DOI: 10.1016/J.YMSSP.2018.01.005
Google Scholar
[13]
X.H. Liang, Z.L. Liu, J. Pan, M.J. Zuo, Spur Gear Tooth Pitting Propagation Assessment Using Model-based Analysis, Chinese Journal of Mechanical Engineering (English Edition) 30 (2017) 1369–1382.
DOI: 10.1007/s10033-017-0196-z
Google Scholar
[14]
J. Liu, C. Wang, W. Wu, Research on Meshing Stiffness and Vibration Response of Pitting Fault Gears with Different Degrees, International Journal of Rotating Machinery 2020 (2020).
DOI: 10.1155/2020/4176430
Google Scholar
[15]
Z. Meng, F. Wang, G. Shi, A novel evolution model of pitting failure and effect on time -varying meshing stiffness of spur gears, Eng Fail Anal 120 (2021) 105068.
DOI: 10.1016/J.ENGFAILANAL.2020.105068
Google Scholar
[16]
Yunxia Chen, Yi Jin, Rui Kang, Wenjun Gong, Yi Yang, The Time-varying Mesh Stiffness Modeling of Gear System with Spalling Defects in Different Positions, in: 2017 4th International Conference on Transportation Information and Safety (ICTIS) : Conference Proceedings : Banff, Alberta, Canada, August 8-10, 2017: p.658–663.
DOI: 10.1109/ictis.2017.8047837
Google Scholar
[17]
F. Wang, P. Dai, S. Yan, J. Wang, L. Niu, Investigation on double shock in vibration response of the gear pair with spalling defects, Proc Inst Mech Eng C J Mech Eng Sci 237 (2023) 4882–4894.
DOI: 10.1177/09544062231153743
Google Scholar
[18]
Y. Luo, N. Baddour, M. Liang, Evaluation of time-varying mesh stiffness of gears with tooth spalls modeled as spherical shapes, in: Proceedings - 2018 Prognostics and System Health Management Conference, PHM-Chongqing 2018, Institute of Electrical and Electronics Engineers Inc., 2019: p.94–99.
DOI: 10.1109/PHM-Chongqing.2018.00022
Google Scholar
[19]
S. Wang, R. Zhu, An improved mesh stiffness calculation model of spur gear pair under mixed EHL friction with spalling effect, in: Vibroengineering Procedia, EXTRICA, 2020: p.176–181.
DOI: 10.21595/vp.2020.21671
Google Scholar
[20]
Y. Huangfu, K. Chen, H. Ma, X. Li, H. Han, Z. Zhao, Meshing and dynamic characteristics analysis of spalled gear systems: A theoretical and experimental study, Mech Syst Signal Process 139 (2020).
DOI: 10.1016/j.ymssp.2020.106640
Google Scholar
[21]
L. Shi, J. Wen, B. Pan, Y. Xiang, Q. Zhang, C. Lin, Dynamic characteristics of a gear system with double-teeth spalling fault and its fault feature analysis, Applied Sciences (Switzerland) 10 (2020) 1–23.
DOI: 10.3390/app10207058
Google Scholar
[22]
W. Luo, B. Qiao, Z. Shen, Z. Yang, H. Cao, X. Chen, Investigation on the influence of spalling defects on the dynamic performance of planetary gear sets with sliding friction, Tribol Int 154 (2021).
DOI: 10.1016/j.triboint.2020.106639
Google Scholar
[23]
L. Xiang, C. An, Y. Zhang, A. Hu, Failure dynamic modelling and analysis of planetary gearbox considering gear tooth spalling, Eng Fail Anal 125 (2021). https://doi.org/10.1016/ j.engfailanal.2021.105444.
DOI: 10.1016/j.engfailanal.2021.105444
Google Scholar
[24]
W. Luo, B. Qiao, Z. Shen, Z. Yang, X. Chen, Time-varying mesh stiffness calculation of a planetary gear set with the spalling defect under sliding friction, Meccanica 55 (2020) 245–260.
DOI: 10.1007/s11012-019-01115-y
Google Scholar
[25]
W. Yu, C.K. Mechefske, M. Timusk, A new dynamic model of a cylindrical gear pair with localized spalling defects, Nonlinear Dyn 91 (2018) 2077–2095.
DOI: 10.1007/s11071-017-4003-2
Google Scholar
[26]
Y. Luo, N. Baddour, G. Han, F. Jiang, M. Liang, Evaluation of the time-varying mesh stiffness for gears with tooth spalls with curved-bottom features, Eng Fail Anal 92 (2018) 430–442.
DOI: 10.1016/j.engfailanal.2018.06.010
Google Scholar
[27]
A. Saxena, A. Parey, M. Chouksey, Time varying mesh stiffness calculation of spur gear pair considering sliding friction and spalling defects, Eng Fail Anal 70 (2016) 200–211.
DOI: 10.1016/J.ENGFAILANAL.2016.09.003
Google Scholar
[28]
L. Zhang, Y. Shao, Mesh Stiffness Calculation of Spur Gears with Tooth Surface Crack, in: Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference IDETC/CIE2019 August 18-21, 2019, Anaheim, CA, USA, 2019. http://asmedigitalcollection.asme.org/IDETC-CIE/proceedings-pdf/IDETC-CIE2019/59308/V010T11A011/6454683/v010t11a011-detc2019-97857.pdf.
DOI: 10.2172/2004364
Google Scholar
[29]
F. Chaari, W. Baccar, M.S. Abbes, M. Haddar, Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission, European Journal of Mechanics, A/Solids 27 (2008) 691–705. https://doi.org/10.1016/ j.euromechsol.2007.11.005.
DOI: 10.1016/j.euromechsol.2007.11.005
Google Scholar
[30]
F. Chaari, T. Fakhfakh, M. Haddar, Analytical modelling of spur gear tooth crack and influence on gearmesh stiffness, European Journal of Mechanics - A/Solids 28 (2009) 461–468.
DOI: 10.1016/J.EUROMECHSOL.2008.07.007
Google Scholar
[31]
O.D. Mohammed, M. Rantatalo, Dynamic response and time-frequency analysis for gear tooth crack detection, Mech Syst Signal Process 66–67 (2016) 612–624.
DOI: 10.1016/J.YMSSP.2015.05.015
Google Scholar
[32]
O.D. Mohammed, M. Rantatalo, Gear tooth crack detection using dynamic response analysis, Insight: Non-Destructive Testing and Condition Monitoring 55 (2013) 417 – 421.
DOI: 10.1784/insi.2012.55.8.417
Google Scholar
[33]
M. Onkareshwar, V. Inturi, S.P. Rajendra, P.K. Penumakala, G.R. Sabareesh, Effect of local gear tooth failures on gear mesh stiffness and vibration response of a single-stage spur gear pair, in: Lecture Notes in Mechanical Engineering, Springer Science and Business Media Deutschland GmbH, 2021: p.1095–1103.
DOI: 10.1007/978-981-15-8049-9_69
Google Scholar
[34]
J. Ning, Z. Chen, Y. Wang, Y. Li, W. Zhai, Vibration feature of spur gear transmission with non-uniform depth distribution of tooth root crack along tooth width, Eng Fail Anal 129 (2021).
DOI: 10.1016/j.engfailanal.2021.105713
Google Scholar
[35]
Z. Chen, W. Zhai, Y. Shao, K. Wang, G. Sun, Analytical model for mesh stiffness calculation of spur gear pair with non-uniformly distributed tooth root crack, Eng Fail Anal 66 (2016) 502–514.
DOI: 10.1016/J.ENGFAILANAL.2016.05.006
Google Scholar
[36]
Z. Chen, Y. Shao, Dynamic simulation of spur gear with tooth root crack propagating along tooth width and crack depth, Eng Fail Anal 18 (2011) 2149–2164. https://doi.org/10.1016/ J.ENGFAILANAL.2011.07.006.
DOI: 10.1016/j.engfailanal.2011.07.006
Google Scholar
[37]
O.D. Mohammed, M. Rantatalo, J.O. Aidanpää, Dynamic modelling of a one-stage spur gear system and vibration-based tooth crack detection analysis, Mech Syst Signal Process 54–55 (2015) 293–305.
DOI: 10.1016/J.YMSSP.2014.09.001
Google Scholar
[38]
L.T. Yang, Y.M. Shao, W.W. Jiang, L.K. Zhang, L.M. Wang, J. Xu, Effects of tooth surface crack propagation on meshing stiffness and vibration characteristic of spur gear system, Applied Sciences (Switzerland) 11 (2021) 1–18.
DOI: 10.3390/app11041968
Google Scholar
[39]
W. Chen, Y. Lei, Y. Fu, L. Hou, A study of effects of tooth surface wear on time-varying mesh stiffness of external spur gear considering wear evolution process, Mech Mach Theory 155 (2021).
DOI: 10.1016/j.mechmachtheory.2020.104055
Google Scholar
[40]
Z. Shen, L. Yang, B. Qiao, W. Luo, X. Chen, R. Yan, Mesh relationship modeling and dynamic characteristic analysis of external spur gears with gear wear, Frontiers of Mechanical Engineering 17 (2022).
DOI: 10.1007/s11465-021-0665-z
Google Scholar
[41]
Y. Wang, K. Li, B. Qiao, Z. Shen, X. Chen, Theoretical Investigation of Mesh Relationship and Mesh Stiffness of Internal Spur Gears with Tooth Wear, Applied Sciences (Switzerland) 13 (2023).
DOI: 10.3390/app13032022
Google Scholar
[42]
N. Dong, Q. Cui, J. Zhou, R. Tong, H. Wang, F. Lu, Study on wear evolution of spur gears considering dynamic meshing stiffness, Journal of Mechanical Science and Technology 37 (2023) 3393–3408.
DOI: 10.1007/s12206-023-0606-3
Google Scholar
[43]
T. Ouyang, G. Wang, L. Cheng, J. Wang, R. Yang, Comprehensive diagnosis and analysis of spur gears with pitting-crack coupling faults, Mech Mach Theory 176 (2022).
DOI: 10.1016/j.mechmachtheory.2022.104968
Google Scholar
[44]
O. Asi, Fatigue failure of a helical gear in a gearbox, Eng Fail Anal 13 (2006) 1116–1125.
DOI: 10.1016/J.ENGFAILANAL.2005.07.020
Google Scholar
[45]
A. Parey, N.K. Jain, S.C. Koria, Failure analysis of air cooled condenser gearbox, Case Stud Eng Fail Anal 2 (2014) 150–156.
DOI: 10.1016/J.CSEFA.2014.08.003
Google Scholar
[46]
V. Rajinikanth, M.K. Soni, B. Mahato, M.A. Rao, Microstructural investigation of rolling contact fatigue (RCF) on a failed planetary gear of a windmill gearbox, Eng Fail Anal 121 (2021).
DOI: 10.1016/j.engfailanal.2020.105167
Google Scholar
[47]
Q. Wang, Y. Zhu, Z. Zhang, C. Fu, C. Dong, H. Su, Partial Load: A Key Factor Resulting in the Failure of Gear in the Wind Turbine Gearbox, Journal of Failure Analysis and Prevention 16 (2016) 109–122.
DOI: 10.1007/s11668-015-0057-y
Google Scholar