[1]
Y. Şahin, Talas Kaldırma Prensipleri I (Metal Cutting Principles I), 2.Baski (2nd Press), Seçkin Yayın&Dağıtım, Ankara, Turkey, 2003.
Google Scholar
[2]
L. B. Abhang, M. Hameedullah, Multi performance optimization in machining of EN-31 alloy using Taguchi-utility concept, Journal of Manufacturing Technology Research 3 (2011) 265-270
Google Scholar
[3]
M. F. Junaid Mır, M. Wani, Modelling and analysis of tool wear and surface roughness in hard turning of AISI D2 steel using response surface methodology, International Journal of Industrial Engineering Computations 9(5) (2018) 63-74.
DOI: 10.5267/j.ijiec.2017.4.004
Google Scholar
[4]
Y. Şahin, Prediction of surface roughness when machining mild steel using statistical methods, Advances in Materials and Processing Technologies 3 (2023)1-17.
DOI: 10.1080/2374068x.2023.2198822
Google Scholar
[5]
S. Kalyanakumar, S. T. Chandy, K.T. Adil Muhammed, P. S. Rohith, Multi-response optimization of machining parameters of turning operation with green environment in EN24T using grey relational analysis in Taguchi method, Materials today: Proceedings 45(7)(2021) 6193-6197.
DOI: 10.1016/j.matpr.2020.10.508
Google Scholar
[6]
V.G. Sargade, S. Gangopadhyay, S. Paul, A.K. Chattopadhyay, Effect of coating thickness and dry performance of TiN film deposited on cemented carbide inserts using CFUBMS, Materials and Manufacturing Processes 26 (2011) 1-6.
DOI: 10.1080/10426914.2010.526978
Google Scholar
[7]
W. Kalss, A. Reiter, V. Derfinger, C. Gay, J.L. Endrino, Modern coating in high performance cutting applications, International Journal of Refractory Metals and Materials 24 (2006) 399-404.
DOI: 10.1016/j.ijrmhm.2005.11.005
Google Scholar
[8]
S. S. Wagha, A. Kulkarni, V. G. Sargade, Machinability studies of austenitic stainless steel (AISI 304) using PVD cathodic arc evaporation (CAE) system deposited AlCrN/ TiAlN coated carbide inserts, Proceedia Engineering 64 (2013) 907 – 914
DOI: 10.1016/j.proeng.2013.09.167
Google Scholar
[9]
W. Grzesik, Experimental investigation of the cutting temperature when turning with coated indexable inserts, International Journal of Machine Tool &Manufacture 39 (1999) 355-369.
DOI: 10.1016/s0890-6955(98)00044-3
Google Scholar
[10]
A. K. Sahoo, B. Sahoo, Surface roughness model and parametric optimization in finish turning using coated carbide insert: Response surface methodology and Taguchi approach, International Journal of Industrial Engineering Computations 2(4)(2011) 819-830.
DOI: 10.5267/j.ijiec.2011.06.001
Google Scholar
[11]
S. Singh, M. F. Yeh, Optimization of abrasive powder mixed EDM of aluminum matrix composites with multiple responses using gray relational analysis, Journal of Materials Engineering and Performance 21(4)(2012) 481–491
DOI: 10.1007/s11665-011-9861-z
Google Scholar
[12]
S. K. Rajbongshi, D. K. Sharma, Process parameters optimization using Taguchi's orthogonal array and grey relational analysis during hard turning of AISI D2 steel in forced air-cooled condition, 2019 IOP Conf. Ser.: Materials Science&Engineering 491(2019) 012032:1-6.
DOI: 10.1088/1757-899x/491/1/012032
Google Scholar
[13]
I. Ramu, P. Srinivas, K. Venkatesh, Taguchi based grey relational analysis for optimization of machining parameters of CNC turning steel 316 R, IOP Conf. Series: Materials Science and Engineering 377 (2018) 012078.
DOI: 10.1088/1757-899x/377/1/012078
Google Scholar
[14]
N. M. I. Elsiti, M. H. S. Elmunafi, Optimization of machining parameters for turning process by using grey relational analysis, World Journal of Advanced Research and Reviews 17(1) (2023) 756–761.
DOI: 10.30574/wjarr.2023.17.1.0080
Google Scholar
[15]
S.R. Bharathi, D. Ravindran, A. M. Moshi, Multi-response optimization of CNC turning parameters of austenitic stainless steel 303 using Taguchi-based grey relational analysis, Transactions of the Canadian Society for Mechanical Engineering 44 (4) (2020) 110-113.
DOI: 10.1139/tcsme-2019-0254
Google Scholar
[16]
Y. Şahin, D. Akbar, D. S. Can, Optimization of the machinability behavior of AISI 304 stainless steel using Taguchi method, 7th International Conference on Recent Advances in Automotive Engineering&Mobility Research, ReCAR2024, 24th– 25th September 2024, Auditorium, Akademia Siber Teknopolis (AST), UKM.
Google Scholar
[17]
K. Chandrasekaran, P. Marimuthu, K. R. Raja, A. Manimaran, Multi response optimization of machining parameters for turning stainless steel using coated tools, Applied Mechanics and Materials 573(2014) 644-648.
DOI: 10.4028/www.scientific.net/amm.573.644
Google Scholar
[18]
A. Hamdan, A.A.D. Sarhan, M. Hamdi, An optimization method of the machining parameters in high-speed machining of stainless steel using coated carbide tool for best surface finish, International Journal of Advanced Manufacturing Technology 58(2012) 81–91.
DOI: 10.1007/s00170-011-3392-5
Google Scholar
[19]
V.D.P. Rao, N. Harsha, N. S. Raghu Ram, V. Navya Geethika, Optimization of cutting parameters in CNC turning of stainless steel 304 with TiAlN nano coated carbide cutting tool, IOP Conference Series: Materials Science and Engineering 310 (2018) 012109.
DOI: 10.1088/1757-899x/310/1/012109
Google Scholar
[20]
M. A. Akgün, Comparative study on the cutting performance of uncoated, AlTiN and TiCN-Al2O3 coated carbide inserts in turning of Invar 36 alloy, Journal of Engineering Research and Applied Science 11 (1) (2022) 2045-2061.
Google Scholar
[21]
A. Sahoo, B. Sahoo, Performance studies of multilayer hard surface coatings (TiN/TiCN/Al2O3/TiN) of indexable carbide inserts in hard machining: Part-I (An experimental approach), Measurement 46 (8) (2013) 2854-2867.
DOI: 10.1016/j.measurement.2013.03.024
Google Scholar
[22]
P. Selvaraj, P. Chandramohan, Optimization of surface roughness of AISI 304 austenitic stainless steel in dry turning operation using Taguchi design method, Journal of Engineering Science and Technology 5(3) (2010) 293-301.
DOI: 10.22214/ijraset.2019.3300
Google Scholar
[23]
A. K. Neha Makwana, Optimization of cutting parameters by using ANOVA method, Journal of Emerging Technologies and Innovative Research (JETIR), 10 (5) (2023) d748-d760.
Google Scholar
[24]
D. Chicco, M. J. Warrens, M. G. Jurman, The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation, Peer Journal of Computation Science 7 (2021) e623.
DOI: 10.7717/peerj-cs.623
Google Scholar
[25]
M.O. Columb, M.S. Atkinson, Statistical analysis: sample size and power estimations, BJA Education 16(5) (2016) 159-161.
DOI: 10.1093/bjaed/mkv034
Google Scholar
[26]
A. U. Alkali, M.H.S. Elmunafi, H. Fawad, Influence of cutting conditions on chip formation when turning ASSAB DF3 hardened tool steel, International Journal of Materials, Mechanics and Manufacturing 1 (2013) 76-79.
DOI: 10.7763/ijmmm.2013.v1.16
Google Scholar
[27]
S. Kalpakjian, S. R. Schmid, C. W. Kok, Manufacturing processes for engineering materials: Pearson-Prentice Hall, 2008.
Google Scholar
[28]
M. Yasir, T. L. Ginta, B. Ariwahjoedi, M. Danish, A. U. Alkali, Evaluation of chips formation of AISI 316l SS using precision end-milling, ARPN Journal of Engineering and Applied Sciences 11 (22) (2016) 12903-12906.
Google Scholar
[29]
H. Yaka, L. Uğur, H. Akkuş, Investigation of surface roughness with multiple regression in turning of AISI 1040 steel, Afyon Kocatepe University Journal of Sciences and Engineering 16, (035901) (2016) 770-775
DOI: 10.5578/fmbd.34280
Google Scholar