Effects of Heat Treatments on Fatigue Damage of Aluminum Alloy 2017A

Article Preview

Abstract:

This study investigates how heat treatment affects the mechanical properties and microstructure of extruded AA2017 aluminum alloy. Quenching (icy water vs. liquid nitrogen) and tempering (T6: 120–160°C; T7: 240°C) significantly alter hardness, tensile strength, and fatigue life. T6 promotes fine, coherent precipitates, enhancing strength and fatigue resistance, while T7 leads to over-aging and property degradation [X]. Icy water quenching improves fatigue life over liquid nitrogen by refining precipitates [Y]. Microstructural analysis reveals elastic adaptation (T6) and plastic shakedown (T7) as fatigue stabilization mechanisms, with fracture modes shifting from ductile (T6) to mixed ductile-brittle (T7) [Z]. These results optimize heat treatment for AA2017 in high-strength, fatigue-critical applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-15

Citation:

Online since:

November 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Williams JC, Starke EA Jr. Acta Mater. 2003;51(19):5775-99.

Google Scholar

[2] Joost WJ, Krajewski PE. Scripta Mater. 2017;128:107-12.

Google Scholar

[3] Miller W et al. Mater Sci Eng A. 2000;280(1):37-49.

Google Scholar

[4] Nezhadfar P et al. Addit Manuf. 2021;47:102292.

Google Scholar

[5] Miller KJ. J Strain Anal. 1970;5(3):185-92.

Google Scholar

[6] Woodthorpe J, Pearce R. Int J Mech Sci. 1974;16(10):699-705.

Google Scholar

[7] Petroyiannis P et al. Int J Fatigue. 2005;27(7):817-27.

Google Scholar

[8] Juijerm P, Altenberger I. Mater Sci Eng A. 2007;452:475-82.

Google Scholar

[9] Imam M et al. J Eng Sci Technol. 2015;10(6):730-42.

Google Scholar

[10] Mokdad A et al. Fatigue Fract Eng Mater Struct. 2024;47(3):677-88.

DOI: 10.1111/ffe.14214

Google Scholar

[11] Bouabdallah Z et al. Fatigue Fract Eng Mater Struct. 2025.

DOI: 10.1111/ffe.14680

Google Scholar

[12] Belattar A et al. Presented at Eur Conf Heat Treat, Genova, 2023.

Google Scholar

[13] May A et al. Presented at Int Conf Fracture, Beijing, 2013.

Google Scholar

[14] May A et al. Mater Sci Eng A. 2013;571:123-36. doi.org/.

DOI: 10.1016/j.msea.2013.01.079

Google Scholar

[15] Hassan T et al. Int J Plast. 2008;24(10):1863-89. doi.org/.

DOI: 10.1016/j.ijplas.2008.04.008

Google Scholar

[16] Taleb L, Cailletaud G. Int J Plast. 2010;26(6):859-74. doi.org/.

DOI: 10.1016/j.ijplas.2009.11.002

Google Scholar

[17] Niesłony A et al. Materwiss Werkstofftech. 2014;45(10):947-52.

Google Scholar

[18] Yankin A et al. Frattura Integrità Strutt. 2022;16(62):180-93.

Google Scholar

[19] Fersaoui B et al. Proc Inst Mech Eng Part C. 2022;236(1):635-54.

Google Scholar

[20] May A et al. Bull Mater Sci. 2017;40(2):395-406.

DOI: 10.1007/s12034-017-1383-3

Google Scholar

[21] Lakache HE et al. Eng Solid Mech. 2023;11(2):291-8. doi.org/.

DOI: 10.5267/j.esm.2023.2.003

Google Scholar

[22] Lakache HE et al. Exp Tech. 2024;48:473-84. doi.org/.

DOI: 10.1007/s40799-023-00671-z

Google Scholar

[23] Lakache HE et al. Int J Adv Manuf Technol. 2024;133:835-49.

DOI: 10.1007/s00170-024-13755-w

Google Scholar

[24] Lakache HE et al. Weld World. 2024;68:1869-79. doi.org/.

DOI: 10.1007/s40194-024-01771-z

Google Scholar

[25] Lakache HE et al. Iran J Mater Sci Eng. 2023;20(3):1-13.

Google Scholar

[26] Meng Y et al. Metals. 2022;12:184. doi.org/.

DOI: 10.3390/met12020184

Google Scholar

[27] Westermann I et al. Trans Nonferrous Met Soc China. 2012;22:1872.

Google Scholar

[28] Eisaabadi BG et al. Mater Sci Eng A. 2013;579:64.

Google Scholar

[29] Guzmán-Flores I et al. Appl Sci. 2024;14:5407.

Google Scholar