[1]
L. B. Abhang, M. Hameedullah, "Multi performance optimization in machining of EN-31 alloy using Taguchi-utility concept", Journal of Manufacturing Technology Research 2 (197) (2020) 265-270.
DOI: 10.1007/s42452-020-2011-1
Google Scholar
[2]
Y. Şahin, "Talas Kaldırma Prensipleri, Cilt 1 (Metal Cutting Principles Vol. 1), 2. Baskı (2nd Press)", Seçkin Yayın&Dağıtım, Ankara, Turkey, 2003.
Google Scholar
[3]
Y. Şahin, "Prediction of surface roughness when machining mild steel using statistical methods", Advances in Materials and Processing Technologies 3 (2023) 1-17. DOI: 10.1080/2374068X.2023. 2198822.
DOI: 10.1080/2374068x.2023.2198822
Google Scholar
[4]
K. Krishnaiah, P. Shahabudeen, "Applied design of experiments and Taguchi methods", Kindle Ed., PHI learning Private Limited, New Delhi-110001, India, 2012.
Google Scholar
[5]
R. Panneerselvem, "Research Methodology", Prentice-Hall of India, New Delhi, India, 2004.
Google Scholar
[6]
J. Ashish George, K. Lokesha, "Optimization and effect of tool rake and approach angle on surface roughness and cutting tool vibration", SN Applied Sciences 1 (2019) 1133-1138.
DOI: 10.1007/s42452-019-1175-z
Google Scholar
[7]
C. J. Rao, D. N. Rao, P. Srihari, "Influence of cutting parameters on cutting force and surface finish in turning operation", Proceedia Engineering 64 (2013) 1405–1415.
DOI: 10.1016/j.proeng.2013.09.222
Google Scholar
[8]
K. S. Geethanjali, C. M. Ramesha, B. R. Chandan, "Comparative studies on machinability of medium carbon low alloy steels EN19 and EN24 using Taguchi optimization techniques", Materials Todays: Proc. 5 (11) (2018) 25705-25712.
DOI: 10.1016/j.matpr.2018.11.012
Google Scholar
[9]
S. Khalilpourazary, P. M. Kashtiban, N. Payam, "Optimization of turning operation of St37 steel using grey relational analysis", Journal of Computational and Applied Research in Mechanical Engineering 3 (2) (2014) 135-144.
Google Scholar
[10]
P. Sahoo, "Optimization of turning parameters for surface roughness using RSM and GA", Advances in Production Engineering & Management 6 (3) (2011) 197-208.
Google Scholar
[11]
S. Kalyanakumar, S. T. Chandy, K. T. Adil Muhammed, P. S. Rohith, "Multi-response optimization of machining parameters of turning operation with green environment in EN24T using grey relational analysis in Taguchi method", Materials today: Proceedings 45 (7) (2020) 6193-6197.
DOI: 10.1016/j.matpr.2020.10.508
Google Scholar
[12]
A. K. Sahoo, B. Sahoo, "Surface roughness model and parametric optimization in finish turning using coated carbide insert: Response surface methodology and Taguchi approach", International Journal of Industrial Engineering Computations 2 (4) (2011) 819-830.
DOI: 10.5267/j.ijiec.2011.06.001
Google Scholar
[13]
P. Sharma, K. Bhambri, "Multi-response optimization by experimental investigation of machining parameters in CNC turning by Taguchi based grey relational analysis", Materials Science 2 (5) (2012) 1594-1602.
DOI: 10.1016/j.proeng.2014.12.242
Google Scholar
[14]
E. Nas, N. A. Özbek, "Optimization of the machining parameters in turning of hardened hot work tool steel using cryogenically treated tool", Surface Review and Letters 27 (5) (2020) 1950177.
DOI: 10.1142/S0218625X19501774
Google Scholar
[15]
M. Özdemir, M. Rafighi, M. A. Awadh, "Comparative evaluation of coated carbide and CBN inserts performance in dry hard-turning of AISI 4140 steel using Taguchi-based grey relation analysis", Coatings 13 (6) (2023) 979-983.
DOI: 10.3390/coatings13060979
Google Scholar
[16]
H. Gürbüz, Y. Emre Gönülaçar, "Optimization and evaluation of dry and minimum quantity lubricating methods on machinability of AISI 4140 using Taguchi design and ANOVA", Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering&Science 235 (7) (2021) 1211-1227.
DOI: 10.1177/0954406220939609
Google Scholar
[17]
K. Safi, M. Yallese, S. Belhadi, T. Mabrouki, S. Chihaoui, "Parametric study and multi-criteria optimization during turning of X210Cr12 steel using the desirability function and hybrid Taguchi-WASPAS method", ARCHIVE Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science 236 (15) (2022) 8401–8420.
DOI: 10.1177/09544062221086171
Google Scholar
[18]
S. K. Shihab, Z. A. Khan, A. Mohammad, A. N. Siddiquee, "Investigations on the effect of CNC dry hard turning process parameters on surface integrity: a multi-performance characteristics optimization", Journal for Manufacturing Science and Production 14 (1) (2013) 23-30.
DOI: 10.1515/jmsp-2013-0019
Google Scholar
[19]
S. Kumar, I. Saravanan, L. Patnaik, "Optimization of surface roughness and material removal rate in milling of AISI 1005 carbon steel using Taguchi approach", Materials Today: Proceedings 22 (3) (2020) 654–658
DOI: 10.1016/j.matpr.2019.09.039
Google Scholar
[20]
S. Shankar, T. Mohanraj, S. K. Thangarasu, "Multi-response milling process optimization using the Taguchi method coupled to grey relational analysis", Materials Testing 58 (5) (2016) 462-470.
DOI: 10.3139/120.110869
Google Scholar
[21]
A.P. Markopoulos, N.E. Karkalos, M. Mia, D.Y. Pimenov, M.K. Gupta, H. Hegab, N. Khanna, V.A. Balogun, S. Sharma, "Sustainability assessment, investigations, and modelling of slot milling characteristics in eco-benign machining of hardened steel", Metals 10 (12) (2020) 1650-1657.
DOI: 10.3390/met10121650
Google Scholar
[22]
D. Y. Pimenov, A. T. Abbas, M. K. Gupta, I. Erdakov, M. S. Soliman, M. M. El Rayes, "Investigations of surface quality and energy consumption associated with costs and material removal rate during face milling of AISI 1045 steel", International Journal of Advanced Manufacturing Technology 107 (2020) 3511–3525.
DOI: 10.1007/s00170-020-05236-7
Google Scholar
[23]
A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, T. Mikolajczyk, M. S. Soliman, M. M. El Rayes, "Optimization of cutting conditions using artificial neural networks and the Edgeworth-Pareto method for CNC face-milling operations on high-strength Grade-H steel", International Journal of Advanced Manufacturing Technology 105 (2019) 2151–2165.
DOI: 10.1007/s00170-019-04327-4
Google Scholar
[24]
M. Shnfir, O. A. Olufayo, W. Jomaa, V. Songmene, "Machinability study of hardened 1045 steel when milling with ceramic cutting inserts", Materials (MDPI) 12 (23) (2019) 3974–3981. DOI: 10. 3390/ma12233974.
DOI: 10.3390/ma12233974
Google Scholar
[25]
Y. Fedai, F. Kahraman, K. K. Akın, G. Basar, "Optimization of machining parameters in face milling using multi-objective Taguchi technique", Tehnički glasnik 12 (2) (2018) 104–108.
DOI: 10.31803/tg-20180201125123
Google Scholar
[26]
V. Parashar, R. Purohit, "Investigation of the effects of the machining parameters on material removal rate using Taguchi method in end milling of steel grade EN19", Materials Today: Proceedings 4 (2017) 336–341
DOI: 10.1016/j.matpr.2017.01.030
Google Scholar
[27]
I. Ramu, P. Srinivas, K. Vekatesh, "Taguchi based grey relational analysis for optimization of machining parameters of CNC turning steel 316 R", in 2018 IOP Conference Series: Materials Science and Engineering 377 (2018) 012078.
DOI: 10.1088/1757-899X/377/1/012078
Google Scholar
[28]
N. M. I. Elsiti, M. H. S. Elmunafi, "Optimization of machining parameters for turning process by using grey relational analysis", World Journal of Advanced Research and Reviews 17 (1) (2023) 756–761.
DOI: 10.30574/wjarr.2023.17.1.0080
Google Scholar
[29]
K. Chandrasekaran, P. Marimuthu, K. R. Raja, A. Manimaran, "Multi response optimization of machining parameters for turning stainless steel using coated tools", Applied Mechanics and Materials 573 (2014) 644-648.
DOI: 10.4028/www.scientific.net/AMM.573.644
Google Scholar
[30]
S.R. Sundara Bharathi, D. Ravindran, A. A. Marcel Moshi, "Multi-response optimization of CNC turning parameters of austenitic stainless steel 303 using Taguchi-based grey relational analysis", Transactions of the Canadian Society for Mechanical Engineering 44 (4) (2020) 110-113.
DOI: 10.1139/tcsme-2019-0254
Google Scholar
[31]
M. Kunto ˘glu, A. Aslan, D. Y. Pimenov, K. Giasin, T. Mikolajczyk, S. Sharma, "Modeling of cutting parameters and tool geometry for multi-criteria optimization of surface roughness and vibration via response surface methodology in turning of AISI 5140 steel", Materials 13 (19) (2020) 4242-4247.
DOI: 10.3390/ma13194242
Google Scholar
[32]
S.K. Rajbongshi, D.K. Sharma, "Process parameters optimization using Taguchi's orthogonal array and grey relational analysis during hard turning of AISI D2 steel in forced air-cooled condition", in 2019 IOP Conference Series: Materials Science, Engineering 491 (012032) (2019) 1-6.
DOI: 10.1088/1757-899X/491/1/012032
Google Scholar
[33]
M. Elbah, M. A. Yallese, H. Aouici, T. Mabrouki, J. C. Rigal, "Comparative assessment of wiper and conventional ceramic tools on surface roughness in hard turning AISI 4140 steel", Measurement 46 (9) (2013) 3041–3056
DOI: 10.1016/j.measurement.2013.06.018
Google Scholar
[34]
Y. Şahin, D. Akbar, "Multi-response optimization in cutting mild steels", Applied Chemical Engineering 7 (1) (2024) 1-10.
DOI: 10.24294/ace.v7i1.2599
Google Scholar
[35]
H. Yaka, L. Uğur, H. Akkuş, "Investigation of surface roughness with multiple regression in turning of AISI 1040 steel", Afyon Kocatepe University Journal of Sciences and Engineering 16, (035901) (2016) 770-775.
DOI: 10.5578/fmbd.34280
Google Scholar
[36]
Y. Şahin, "Prediction of surface roughness on hardened bearing steel machined by ceramic cutting tool", SAE International Materials & Manufacturing 6 (3) (2023) 1-9.
DOI: 10.4271/05-16-03-0021
Google Scholar