[1]
G.C. Bailly, Y. El Mendili, A. Konin, E. Khoury, Advancing Earth-Based Construction: A Comprehensive Review of Stabilization and Reinforcement Techniques for Adobe and Compressed Earth Blocks, Eng 5 (2024) 750–783.
DOI: 10.3390/eng5020041
Google Scholar
[2]
J.M. De Souza, R.E.B. Ramos Filho, J.B. Duarte, V.M. da Silva, S.R. do Rêgo, L. de F.L. Lucena, W. Acchar, Mechanical and durability properties of compressed stabilized earth brick produced with cassava wastewater, Journal of Building Engineering 44 (2021) 103290.
DOI: 10.1016/j.jobe.2021.103290
Google Scholar
[3]
S.N. Malkanthi, W.G.S. Wickramasinghe, A. Perera, Use of construction waste to modify soil grading for compressed stabilized earth blocks (CSEB) production, Case Studies in Construction Materials 15 (2021) e00717.
DOI: 10.1016/j.cscm.2021.e00717
Google Scholar
[4]
D.C. Sekhar, S. Nayak, Utilization of granulated blast furnace slag and cement in the manufacture of compressed stabilized earth blocks, Constr Build Mater 166 (2018) 531–536.
DOI: 10.1016/j.conbuildmat.2018.01.125
Google Scholar
[5]
C. Egenti, J.M. Khatib, Sustainability of compressed earth as a construction material, in: Sustainability of Construction Materials, Elsevier, 2016: p.309–341.
DOI: 10.1016/b978-0-08-100370-1.00013-5
Google Scholar
[6]
C. Turco, A.C.P. Junior, E.R. Teixeira, R. Mateus, Optimisation of Compressed Earth Blocks (CEBs) using natural origin materials: A systematic literature review, Constr Build Mater 309 (2021) 125140.
DOI: 10.1016/j.conbuildmat.2021.125140
Google Scholar
[7]
J.R. González-López, C.A. Juárez-Alvarado, B. Ayub-Francis, J.M. Mendoza-Rangel, Compaction effect on the compressive strength and durability of stabilized earth blocks, Constr Build Mater 163 (2018) 179–188.
DOI: 10.1016/j.conbuildmat.2017.12.074
Google Scholar
[8]
P. Kasinikota, D.D. Tripura, Evaluation of compressed stabilized earth block properties using crushed brick waste, Constr Build Mater 280 (2021) 122520.
DOI: 10.1016/j.conbuildmat.2021.122520
Google Scholar
[9]
S.P. Cabrera, Y.G.A. Jiménez, E.J.S. Domínguez, R. Rotondaro, Compressed earth blocks (CEB) stabilized with lime and cement. Evaluation of both their environmental impact and compressive strength. Habitat Sustentable 10 (2): 70–81, (2020).
DOI: 10.22320/07190700.2020.10.02.05
Google Scholar
[10]
C. Reyna-Ruiz, J.M. Gómez-Soberón, M.N. Rojas-Valencia, Feasibility and Application of Local Closed-Loop Materials to Produce Compressed and Stabilized Earth Blocks, Materials 17 (2024) 3358.
DOI: 10.3390/ma17133358
Google Scholar
[11]
M. Mahdad, A. Benidir, Hydro-mechanical properties and durability of earth blocks: Influence of different stabilisers and compaction levels, International Journal of Sustainable Building Technology and Urban Development 9 (2018) 44-60.
Google Scholar
[12]
S.O. Sore, A. Messan, E. Prud'Homme, G. Escadeillas, F. Tsobnang, Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso, Constr Build Mater 165 (2018) 333–345.
DOI: 10.1016/j.conbuildmat.2018.01.051
Google Scholar
[13]
N. Rebello, K. Deekshitha, S. Shetty, Hydraulically manufactured cement and fly ash stabilized compressed soil block, Mater Today Proc 88 (2023) 29–34.
DOI: 10.1016/j.matpr.2023.04.483
Google Scholar
[14]
S. Paul, M.S. Islam, N. Chakma, Effectiveness of areca fiber and cement on the engineering characteristics of compressed stabilized earth blocks, Constr Build Mater 427 (2024) 136290.
DOI: 10.1016/j.conbuildmat.2024.136290
Google Scholar
[15]
T.E. Elahi, A.R. Shahriar, M.S. Islam, Engineering characteristics of compressed earth blocks stabilized with cement and fly ash, Constr Build Mater 277 (2021) 122367.
DOI: 10.1016/j.conbuildmat.2021.122367
Google Scholar
[16]
N. Sathiparan, W. Jayasundara, K.S.D. Samarakoon, B. Banujan, Prediction of characteristics of cement stabilized earth blocks using non-destructive testing: Ultrasonic pulse velocity and electrical resistivity, Materialia (Oxf) 29 (2023) 101794.
DOI: 10.1016/j.mtla.2023.101794
Google Scholar
[17]
S.S.D. Raavi, D.D. Tripura, Predicting and evaluating the engineering properties of unstabilized and cement stabilized fibre reinforced rammed earth blocks, Constr Build Mater 262 (2020) 120845.
DOI: 10.1016/j.conbuildmat.2020.120845
Google Scholar
[18]
K. Sajanthan, B. Balagasan, N. Sathiparan, Prediction of compressive strength of stabilized earth block masonry, Advances in Civil Engineering 2019 (2019) 2072430.
DOI: 10.1155/2019/2072430
Google Scholar
[19]
T.L. Yannick, T.G.G. Molay, T.D. Japhet, S.M.A. Donald, A. Therèse, N.M. Soualiou, M.N.L. Leroy, Suitability of the soils of Monatélé (Centre Cameroon) in the production of fired compressed earth bricks, statistical analysis, and modeling of the mechanical behavior, JMST Advances 4 (2022) 25–44.
DOI: 10.1007/s42791-022-00045-3
Google Scholar
[20]
P. Kasinikota, D.D. Tripura, Flexural behavior of hollow interlocking compressed stabilized earth-block masonry walls under out-of-plane loading, Journal of Building Engineering 57 (2022) 104895.
DOI: 10.1016/j.jobe.2022.104895
Google Scholar
[21]
M.R. Hall, K.B. Najim, P.K. Dehdezi, Soil stabilisation and earth construction: materials, properties and techniques, in: Modern Earth Buildings, Elsevier, 2012: p.222–255.
DOI: 10.1533/9780857096166.2.222
Google Scholar
[22]
L. Wang, F. Aslani, Electrical resistivity and piezoresistivity of cement mortar containing ground granulated blast furnace slag, Constr Build Mater 263 (2020) 120243.
DOI: 10.1016/j.conbuildmat.2020.120243
Google Scholar
[23]
A. Silva, J. De Brito, P.L. Gaspar, Methodologies for service life prediction of buildings: with a focus on façade claddings, Green Ener, The registered company is Springer International Publishing AG Switzerland, 2016.
Google Scholar
[24]
U.K. Unamba, E.S. Nwajagu, J. Abutu, O.J. Agbo-Anike, Predictive Model of the Compressive Strength of Concrete Containing Coconut Shell Ash as Partial Replacement of Cement Using Multiple Regression Analysis, 2021. www.ijisrt.com600.
Google Scholar
[25]
S.S. Wu, B.Z. Li, J.G. Yang, S.K. Shukla, Predictive modeling of high-performance concrete with regression analysis, in: 2010 IEEE International Conference on Industrial Engineering and Engineering Management, IEEE, 2010: p.1009–1013.
DOI: 10.1109/ieem.2010.5674229
Google Scholar
[26]
O. Keleştemur, S. Yildiz, B. Gökçer, E. Arici, Statistical analysis for freeze-thaw resistance of cement mortars containing marble dust and glass fiber, Mater Des 60 (2014) 548–555.
DOI: 10.1016/j.matdes.2014.04.013
Google Scholar
[27]
J. Abellan-Garcia, Y.M. Abbas, M.I. Khan, F. Pellicer-Martínez, ANOVA-guided assessment of waste glass and limestone powder influence on ultra-high-performance concrete properties, Case Studies in Construction Materials 20 (2024).
DOI: 10.1016/j.cscm.2024.e03231
Google Scholar
[28]
M. Fakhri, E. Amoosoltani, The effect of Reclaimed Asphalt Pavement and crumb rubber on mechanical properties of Roller Compacted Concrete Pavement, Constr Build Mater 137 (2017) 470–484.
DOI: 10.1016/j.conbuildmat.2017.01.136
Google Scholar
[29]
D.C. Montgomery, E.A. Peck, G.G. Vining, Introduction to linear regression analysis, John Wiley & Sons, 2021.
Google Scholar
[30]
W. Wang, J. Zhu, X. Cheng, D. Jiang, G. Shi, X. Chen, Study and prediction analysis on road performance of basalt fiber permeable concrete, Science and Engineering of Composite Materials 30 (2023).
DOI: 10.1515/secm-2022-0223
Google Scholar
[31]
C. Chai, J. De Brito, P.L. Gaspar, A. Silva, Statistical modelling of the service life prediction of painted surfaces, International Journal of Strategic Property Management 19 (2015) 173–185.
DOI: 10.3846/1648715x.2015.1031853
Google Scholar
[32]
P. Singh, A. Adebanjo, N. Shafiq, S.N.A. Razak, V. Kumar, S.A. Farhan, I. Adebanjo, A. Singh, S. Dixit, S. Singh, Development of performance-based models for green concrete using multiple linear regression and artificial neural network, International Journal on Interactive Design and Manufacturing (IJIDeM) 18 (2024) 2945–2956.
DOI: 10.1007/s12008-023-01386-6
Google Scholar