The Electrical Properties of VN Thin Films Prepared Using Reactive Magnetron Sputtering

Article Preview

Abstract:

The VN thin films were deposited on glass and Al₂O₃ substrates using reactive magnetron sputtering with a vanadium target in an Ar/N₂ mixed atmosphere. The deposition process was carried out at a substrate temperature of 25 °C and a sputtering power of 250 W. VN thin films were systematically prepared on glass substrates by varying the N₂/(Ar+N₂) ratio to 25%, 33%, 42%, and 56%. The results demonstrated that all as-deposited films consistently exhibited a face-centered cubic (FCC) NaCl-type crystal structure, regardless of the N₂/(Ar+N₂) ratio. Notably, the crystallization phase remained stable even when annealed at temperatures ranging from room temperature to 400 °C. As the nitrogen content increased, the resistivity of the films decreased, and the temperature coefficient of resistance (TCR) shifted toward smaller values. At a nitrogen content of 56%, the film exhibited the lowest resistivity of 63 μΩ-cm, along with a TCR of-460 ppm/°C. Furthermore, the resistivity demonstrated good stability, with only a 3% variation observed over one month.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-103

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.H. Lin, H.Y. Lee, Y.T. Tseng, Y.C. Lee, Thin Solid Film, 660 (2018) 695-704.

Google Scholar

[2] R.C. Lin, T.K. Lee, D.H. Wu, Y.C. Lee, Adv. in Mater. Sci. & Eng., 2015 (2015) 847191, 1-7.

Google Scholar

[3] W.J. Chen, T.Y. Liu, H.Y. Lee, Y.C. Lee, Mater. Chemi. & Phys., 210 (2018) 327-335.

Google Scholar

[4] Yuqin Zhang, Xianping Dong, Jiansheng Wu, Mater. Sci. & Eng. B, 113 (2004) 154–160.

Google Scholar

[5] Seema Vinayak, H.P. Vyas, V.D. Vankar, Thin Solid Films, 515 (2007) 7109–7116.

DOI: 10.1016/j.tsf.2007.03.011

Google Scholar

[6] Lifei Lai, Wenjin Zeng, Xianzhu Fu, Rong Sun, Ruxu Du, J. All. & Comp., 538, (2012) 125-130.

Google Scholar

[7] P.Y. Lee, C.X. Lin, Y.T. Tseng, Y.C. Lee, Jap. J. Appl. Phy., 59 (2020) 116502, 1-9.

Google Scholar

[8] Y.C. Lee, H. Yang, H.J. Shih, Key Eng. Mater., 995 (2024) 37-42.

Google Scholar

[9] T. Hashizume, A. Saiki, and K. Terayama, Mater. Sci. & Eng., 18 (2011) 092032, 1-4.

Google Scholar

[10] H. Gueddaoui, G. Schmerber, M. Abes, M. Guemmaz, J.C. Parlebas, Catalysis Today, 113, (2006) 270-274.

DOI: 10.1016/j.cattod.2005.11.079

Google Scholar

[11] C.K. Wu, J.H. Huang, G.P. Yu, Mater. Chem. & Phy., 224 (2019) 246-256.

Google Scholar

[12] J.H. Huang, C.H. Lin, G.P. Yu, Thin Solid Films, 688 (2019) 137415, 1-10.

Google Scholar

[13] D. Depla, R. De Gryse, Surf. & Coat. Technol., 183 (2004)190-195.

Google Scholar

[14] X. Chu and S. A. Barnett and W. D. Sproul, J. Vac. Sci. Technol. A, 14 (1996) 3124-3129.

Google Scholar

[15] H. Chen, H. Zhang, H.R. Gao, Q.J. Zhou, G.C. Xiao, N. Guo, W. Zhao, J. Mater. Res. & Technol., 28 (2024) 53–65.

Google Scholar

[16] R.B. Villoro, Maxwell Wood, T. Luo, H. Bishara, L. Abdellaoui, D.C. Zavanelli, Baptiste Gault, G.J. Snyder, C. Scheu, S. Zhang, Acta Materialia, 249 (2023) 118816.

DOI: 10.1016/j.actamat.2023.118816

Google Scholar

[17] M.B. Sahana, C. Sudakar, C. Thapa, G. Lawes, V.M. Naik, R.J. Baird, G.W. Auner, R. Naik, K.R. Padmanabhan, Mater. Sci. & Eng.: B, 143 (2007) 42-50.

DOI: 10.1016/j.mseb.2007.08.002

Google Scholar

[18] A.C. García-Wong, D. Pilloud, S. Bruyère, D. Mangin, S. Migot, J.F. Pierson, F. Capon, J. Materiomics, 7 (2021) 657-664.

DOI: 10.1016/j.jmat.2020.12.005

Google Scholar