[1]
Lee, C. H., Chou, H. W., & Huang, C. C. (2024). Structural integrity analysis with crack propagation for reactor pressure vessel nozzles based on XFEM. International Journal of Pressure Vessels and Piping, 207, 105109.
DOI: 10.1016/j.ijpvp.2023.105109
Google Scholar
[2]
Kim, J. S., Seo, J. M., Kang, J. Y., Jang, Y. Y., Lee, Y. J., & Kim, K. W. (2022). Constraint-corrected fracture mechanics analysis of nozzle crotch corners in pressurized water reactors. Nuclear Engineering and Technology, 54(5), 1726-1746.
DOI: 10.1016/j.net.2021.11.022
Google Scholar
[3]
Lee, C. H., & Chou, H. W. (2022). Stress intensity factor assessment for reactor pressure vessel nozzles containing postulated corner cracks. Engineering Fracture Mechanics, 275, 108838.
DOI: 10.1016/j.engfracmech.2022.108838
Google Scholar
[4]
Gupta, S. R., Desai, A., & Vora, C. P. (2014). Optimize nozzle location for minimization of stress in pressure vessel. Int. J. Adv. Eng. Res. Dev.(IJAERD), 1(6), 1-14.
Google Scholar
[5]
Lathuef, S. A., & Sekhar, C. K. (2012). Design and structural analysis of pressure vessel due to change of nozzle location and shell thickness. International Journal of Advanced Engineering Research and Studies, 1(2), 218-221.
Google Scholar
[6]
Prasad, N. S., & Vardhani, K. V. R. (1989). Computer aided development of surfaces for intersecting cylinders and cones. Computers & structures, 33(3), 729-733.
DOI: 10.1016/0045-7949(89)90246-0
Google Scholar
[7]
Skopinsky, V. N., & Smetankin, A. B. (2003). Parametric study of reinforcement of pressure vessel head with offset nozzle. International journal of pressure vessels and piping, 80(5), 333-343.
DOI: 10.1016/s0308-0161(02)00138-2
Google Scholar
[8]
Skopinsky, V. N. (2000). Stresses in ellipsoidal pressure vessel heads with noncentral nozzle. Nuclear engineering and design, 198(3), 317-323.
DOI: 10.1016/s0029-5493(99)00342-8
Google Scholar
[9]
Lewiński, J. (2014). Equivalent stress in a pressure vessel head with a nozzle. Journal of Theoretical and Applied Mechanics, 52(4), 1007-1018.
DOI: 10.15632/jtam-pl.52.4.1007
Google Scholar
[10]
Oh, C., Lee, S., & Jhung, M. J. (2022). Analytical method to estimate cross-section stress profiles for reactor vessel nozzle corners under internal pressure. Nuclear Engineering and Technology, 54(1), 401-413.
DOI: 10.1016/j.net.2021.08.001
Google Scholar
[11]
Liu, C., Jiao, G. C., Chandwani, R., & Timbrell, C. (2021). Study on application range of SIF calculation method for nozzle corner crack in pressure vessel for ASME XI code. International Journal of Pressure Vessels and Piping, 193, 104478.
DOI: 10.1016/j.ijpvp.2021.104478
Google Scholar
[12]
Diamantoudis, A. T., & Labeas, G. N. (2005). Stress intensity factors of semi-elliptical surface cracks in pressure vessels by global-local finite element methodology. Engineering Fracture Mechanics, 72(9), 1299-1312.
DOI: 10.1016/j.engfracmech.2004.10.004
Google Scholar
[13]
Naweed, M., Murtaza, U. T., & Siddique, W. (2023). Fracture mechanics analysis of a closure head of a PWR reactor pressure vessel LEFM-based SIF. International Journal of Pressure Vessels and Piping, 201, 104847.
DOI: 10.1016/j.ijpvp.2022.104847
Google Scholar
[14]
Ayhan, A. O., & Nied, H. F. (2002). Stress intensity factors for three‐dimensional surface cracks using enriched finite elements. International Journal for Numerical Methods in Engineering, 54(6), 899-921.
DOI: 10.1002/nme.459
Google Scholar
[15]
Ayhan, A. O. (2000). Finite element analysis of nonlinear deformation mechanisms in semiconductor packages, Ph.D. Dissertation Lehigh University, 1999.
Google Scholar