[1]
Marković, A.; Stojanović, B.; Komatina, N.; Ivanović, L. Multi-Attribute Approach for Selection of Polymeric Materials for Manufacturing Gears: A Case Study in the Automotive Industry. Proc Inst Mech Eng C J Mech Eng Sci 2024, 238, 10744–10755.
DOI: 10.1177/09544062241271690
Google Scholar
[2]
Marković, A.; Ivanović, L.; Stojanović, B. Characteristics, Manufacturing, and Testing Methods of Polymer Gears: Review. In Proceedings of the Lecture Notes in Networks and Systems; 2024; Vol. 866 LNNS.
DOI: 10.1007/978-3-031-51494-4_23
Google Scholar
[3]
Alami, M.; Mokaddem, A.; Belkheir, M.; Rouissat, M.; Doumi, B.; Ziani, D. IMPROVING THE PERFORMANCE OF HYBRID BIOCOMPOSITE MATERIALS USING EPOXY, VINYL ESTER AND POLYIMIDE POLYMER MATRIX: COMPARATIVE STUDY. Applied Engineering Letters 2024, 9, 64–75.
DOI: 10.46793/AELETTERS.2024.9.2.1
Google Scholar
[4]
Tarun, D.; Ganesan, G.; Sundar, S. INVESTIGATION OF THE MECHANICAL BEHAVIOR OF EPOXY COMPOSITES FILLED WITH BAGASSE ASH AND PISTACHIO SHELL ASH: A COMPARATIVE STUDY. Applied Engineering Letters 2024, 9, 215–231.
DOI: 10.46793/aeletters.2024.9.4.4
Google Scholar
[5]
He, F.; Thakur, V.K.; Khan, M. Evolution and New Horizons in Modeling Crack Mechanics of 3D Printing Polymeric Structures. Mater Today Chem 2021, 20.
DOI: 10.1016/j.mtchem.2020.100393
Google Scholar
[6]
Westergaard, H.M. Bearing Pressures and Cracks. J Appl Mech 1939, 6, A49-53.
Google Scholar
[7]
Irwin, G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J Appl Mech 1957, 24, 361–364.
DOI: 10.1115/1.4011547
Google Scholar
[8]
Paris, P.C.; Gomez, M.P.; Anderson, W.E. A Rational Analytic Theory of Fatigue. The Trend in Engineering 1961, 13, 9–14.
Google Scholar
[9]
Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering 1963.
DOI: 10.1115/1.3656900
Google Scholar
[10]
Abusabir, A.; Khan, M.A.; Asif, M.; Khan, K.A. Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures. Polymers (Basel) 2022, 14.
DOI: 10.3390/polym14030618
Google Scholar
[11]
Hassanieh, S. Al; Alhantoobi, A.; Khan, K.A.; Khan, M.A. Mechanical Properties and Energy Absorption Characteristics of Additively Manufactured Lightweight Novel Re-Entrant Plate-Based Lattice Structures. Polymers (Basel) 2021, 13.
DOI: 10.3390/polym13223882
Google Scholar
[12]
Asif, M.; Ramezani, M.; Khan, K.A.; Khan, M.A.; Aw, K.C. Experimental and Numerical Study of the Effect of Silica Filler on the Tensile Strength of a 3D-Printed Particulate Nanocomposite. Comptes Rendus - Mecanique 2019, 347, 615 – 625.
DOI: 10.1016/j.crme.2019.07.003
Google Scholar
[13]
Almutairi, M.D.; Mascarenhas, T.A.; Alnahdi, S.S.; He, F.; Khan, M.A. Modal Response of Hybrid Raster Orientation on Material Extrusion Printed Acrylonitrile Butadiene Styrene and Polyethylene Terephthalate Glycol under Thermo-Mechanical Loads. Polym Test 2023, 120.
DOI: 10.1016/J.POLYMERTESTING.2023.107953
Google Scholar
[14]
Alshammari, Y.L.A.; He, F.; Khan, M.A. Modelling and Investigation of Crack Growth for 3D-Printed Acrylonitrile Butadiene Styrene (ABS) with Various Printing Parameters and Ambient Temperatures. Polymers (Basel) 2021, 13, 3737.
DOI: 10.3390/polym13213737
Google Scholar
[15]
He, F.; Alshammari, Y.L.A.; Khan, M. The Effect of Printing Parameters on Crack Growth Rate of FDM ABS Cantilever Beam under Thermo-Mechanical Loads. In Proceedings of the Procedia Structural Integrity; 2021; Vol. 34.
DOI: 10.1016/j.prostr.2021.12.009
Google Scholar
[16]
He, F.; Khan, M. Effects of Printing Parameters on the Fatigue Behaviour of 3d-Printed Abs under Dynamic Thermo-Mechanical Loads. Polymers (Basel) 2021, 13.
DOI: 10.3390/polym13142362
Google Scholar
[17]
Mura, A.; Ricci, A.; Canavese, G. Investigation of Fatigue Behavior of ABS and PC-ABS Polymers at Different Temperatures. Materials 2018, 11, 1–14.
DOI: 10.3390/ma11101818
Google Scholar
[18]
YI, M.; XUE, M.; CONG, P.; SONG, Y.; ZHANG, H.; WANG, L.; ZHOU, L.; LI, Y.; GUO, W. Machine Learning for Predicting Fatigue Properties of Additively Manufactured Materials. Chinese Journal of Aeronautics 2024, 37.
DOI: 10.1016/j.cja.2023.11.001
Google Scholar
[19]
Tian, Y.; Zheng, B.; Khan, M.; He, F. Influence of Sliding Direction Relative to Layer Orientation on Tribological Performance, Noise, and Stability in 3D-Printed ABS Components. Tribol Int 2025, 210, 110762.
DOI: 10.1016/J.TRIBOINT.2025.110762
Google Scholar
[20]
Zhang, P.; He, F.; Khan, M. Optimization of Printing Parameters for Self-Lubricating Polymeric Materials Fabricated via Fused Deposition Modelling. Polymers 2025, Vol. 17, Page 1401 2025, 17, 1401.
DOI: 10.3390/POLYM17101401
Google Scholar
[21]
He, F.; Xu, C.; Khan, M. Tribological Characterisation and Modelling for the Fused Deposition Modelling of Polymeric Structures under Lubrication Conditions. Polymers (Basel) 2023, 15.
DOI: 10.3390/polym15204112
Google Scholar
[22]
Shams, H.; Basit, K.; Khan, M.A.; Mansoor, A.; Saleem, S. Scalable Wear Resistant 3D Printed Slippery Liquid Infused Porous Surfaces (SLIPS). Addit Manuf 2021, 48.
DOI: 10.1016/j.addma.2021.102379
Google Scholar
[23]
He, F.; Khan, M.; Aldosari, S. Interdependencies between Dynamic Response and Crack Growth in a 3D-Printed Acrylonitrile Butadiene Styrene (ABS) Cantilever Beam under Thermo-Mechanical Loads. Polymers (Basel) 2022, 14.
DOI: 10.3390/polym14050982
Google Scholar
[24]
Yang, Z.; He, F.; Khan, M. An Empirical Torsional Spring Model for the Inclined Crack in a 3D-Printed Acrylonitrile Butadiene Styrene (ABS) Cantilever Beam. Polymers (Basel) 2023, 15, 496.
DOI: 10.3390/POLYM15030496
Google Scholar
[25]
He, F.; Ning, H.; Khan, M. Effect of 3D Printing Process Parameters on Damping Characteristic of Cantilever Beams Fabricated Using Material Extrusion. Polymers (Basel) 2023, 15.
DOI: 10.3390/polym15020257
Google Scholar
[26]
Zai, B.A.; Khan, M.A.; Khan, S.Z.; Asif, M.; Khan, K.A.; Saquib, A.N.; Mansoor, A.; Shahzad, M.; Mujtaba, A. Prediction of Crack Depth and Fatigue Life of an Acrylonitrile Butadiene Styrene Cantilever Beam Using Dynamic Response. J Test Eval 2020, 48, 20180674.
DOI: 10.1520/JTE20180674
Google Scholar
[27]
Baqasah, H.; He, F.; Zai, B.A.; Asif, M.; Khan, K.A.; Thakur, V.K.; Khan, M.A. In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load. Polymers (Basel) 2019, 11.
DOI: 10.3390/polym11122079
Google Scholar
[28]
Asli, S.; Khan, B.; Potential, M.; Azouz, Z.; Honarvar, B.; Khan, M. Potential of Non-Contact Dynamic Response Measurements for Predicting Small Size or Hidden Damages in Highly Damped Structures. Sensors 2024, Vol. 24, Page 5871 2024, 24, 5871.
DOI: 10.3390/S24185871
Google Scholar
[29]
Francese, A.; Khan, M.; He, F. Role of Dynamic Response in Inclined Transverse Crack Inspection for 3D-Printed Polymeric Beam with Metal Stiffener. Materials 2023, 16.
DOI: 10.3390/ma16083095
Google Scholar
[30]
Almutairi, M.D.; Aria, A.I.; Thakur, V.K.; Khan, M.A. Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality. Polymers (Basel) 2020, 12.
DOI: 10.3390/polym12071534
Google Scholar
[31]
Atwah, A.A.; Khan, M.A. Influence of Microscopic Features on the Self-Cleaning Ability of Textile Fabrics. Textile Research Journal 2023, 93.
DOI: 10.1177/00405175211069881
Google Scholar
[32]
Shams, H.; Basit, K.; Khan, M.A.; Saleem, S.; Mansoor, A. Realizing Surface Amphiphobicity Using 3D Printing Techniques: A Critical Move towards Manufacturing Low-Cost Reentrant Geometries. Addit Manuf 2021, 38.
DOI: 10.1016/j.addma.2020.101777
Google Scholar
[33]
Almutairi, M.D.; He, F.; Alshammari, Y.L.; Alnahdi, S.S.; Khan, M.A. Analysis of the Self-Healing Capability of Thermoplastic Elastomer Capsules in a Polymeric Beam Structure Based on Strain Energy Release Behaviour during Crack Growth. Polymers (Basel) 2023, 15.
DOI: 10.3390/polym15163384
Google Scholar
[34]
Vanaei, H.R.; Khelladi, S.; Tcharkhtchi, A.; Almutairi, M.D.; Alnahdi, S.; Khan, M.A. Strain Release Behaviour during Crack Growth of a Polymeric Beam under Elastic Loads for Self-Healing. Polymers 2022, Vol. 14, Page 3102 2022, 14, 3102.
DOI: 10.3390/POLYM14153102
Google Scholar
[35]
Chan, K.P.; He, F.; Atwah, A.A.; Khan, M. Experimental Investigation of Self-Cleaning Behaviour of 3D-Printed Textile Fabrics with Various Printing Parameters. Polym Test 2023, 107941.
DOI: 10.1016/J.POLYMERTESTING.2023.107941
Google Scholar
[36]
Hasdiansah, H.; Yaqin, R.I.; Pristiansyah, P.; Umar, M.L.; Priyambodo, B.H. FDM-3D Printing Parameter Optimization Using Taguchi Approach on Surface Roughness of Thermoplastic Polyurethane Parts. International Journal on Interactive Design and Manufacturing 2023, 17.
DOI: 10.1007/s12008-023-01304-w
Google Scholar