Damage in 3D Printed Polymeric Structures: The Trade Off in Printing Parameters and Damage Resistance

Article Preview

Abstract:

Additive manufacturing (AM), particularly fused deposition modelling (FDM), enables fabricating polymeric structures with complex geometries and functional capabilities. However, the mechanical reliability of FDM components is hindered by process-induced defects and anisotropy, which complicate damage initiation and propagation mechanisms. This paper summarises the damage behaviour of FDM-printed polymers through an integrated experimental–numerical approach. Static and fatigue tests reveal that interlayer bonding quality, infill orientation, and thermal exposure significantly influence stiffness, fracture resistance, and fatigue life. Microstructural features such as void morphology and crack propagation patterns are shown to govern failure modes more than intrinsic material properties. Tribological analyses further demonstrate the sensitivity of wear performance to surface orientation and process parameters, while dynamic response studies establish vibration-based indicators for early-stage damage detection. The implementation of bioinspired self-healing capsules and surface-engineered self-cleaning layers reflects the trend towards multifunctional damage mitigation strategies. Future research directions are outlined, including the need for damage modelling considering multi-loading conditions and different printing parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

151-164

Citation:

Online since:

December 2025

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Marković, A.; Stojanović, B.; Komatina, N.; Ivanović, L. Multi-Attribute Approach for Selection of Polymeric Materials for Manufacturing Gears: A Case Study in the Automotive Industry. Proc Inst Mech Eng C J Mech Eng Sci 2024, 238, 10744–10755.

DOI: 10.1177/09544062241271690

Google Scholar

[2] Marković, A.; Ivanović, L.; Stojanović, B. Characteristics, Manufacturing, and Testing Methods of Polymer Gears: Review. In Proceedings of the Lecture Notes in Networks and Systems; 2024; Vol. 866 LNNS.

DOI: 10.1007/978-3-031-51494-4_23

Google Scholar

[3] Alami, M.; Mokaddem, A.; Belkheir, M.; Rouissat, M.; Doumi, B.; Ziani, D. IMPROVING THE PERFORMANCE OF HYBRID BIOCOMPOSITE MATERIALS USING EPOXY, VINYL ESTER AND POLYIMIDE POLYMER MATRIX: COMPARATIVE STUDY. Applied Engineering Letters 2024, 9, 64–75.

DOI: 10.46793/AELETTERS.2024.9.2.1

Google Scholar

[4] Tarun, D.; Ganesan, G.; Sundar, S. INVESTIGATION OF THE MECHANICAL BEHAVIOR OF EPOXY COMPOSITES FILLED WITH BAGASSE ASH AND PISTACHIO SHELL ASH: A COMPARATIVE STUDY. Applied Engineering Letters 2024, 9, 215–231.

DOI: 10.46793/aeletters.2024.9.4.4

Google Scholar

[5] He, F.; Thakur, V.K.; Khan, M. Evolution and New Horizons in Modeling Crack Mechanics of 3D Printing Polymeric Structures. Mater Today Chem 2021, 20.

DOI: 10.1016/j.mtchem.2020.100393

Google Scholar

[6] Westergaard, H.M. Bearing Pressures and Cracks. J Appl Mech 1939, 6, A49-53.

Google Scholar

[7] Irwin, G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J Appl Mech 1957, 24, 361–364.

DOI: 10.1115/1.4011547

Google Scholar

[8] Paris, P.C.; Gomez, M.P.; Anderson, W.E. A Rational Analytic Theory of Fatigue. The Trend in Engineering 1961, 13, 9–14.

Google Scholar

[9] Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. Journal of Basic Engineering 1963.

DOI: 10.1115/1.3656900

Google Scholar

[10] Abusabir, A.; Khan, M.A.; Asif, M.; Khan, K.A. Effect of Architected Structural Members on the Viscoelastic Response of 3D Printed Simple Cubic Lattice Structures. Polymers (Basel) 2022, 14.

DOI: 10.3390/polym14030618

Google Scholar

[11] Hassanieh, S. Al; Alhantoobi, A.; Khan, K.A.; Khan, M.A. Mechanical Properties and Energy Absorption Characteristics of Additively Manufactured Lightweight Novel Re-Entrant Plate-Based Lattice Structures. Polymers (Basel) 2021, 13.

DOI: 10.3390/polym13223882

Google Scholar

[12] Asif, M.; Ramezani, M.; Khan, K.A.; Khan, M.A.; Aw, K.C. Experimental and Numerical Study of the Effect of Silica Filler on the Tensile Strength of a 3D-Printed Particulate Nanocomposite. Comptes Rendus - Mecanique 2019, 347, 615 – 625.

DOI: 10.1016/j.crme.2019.07.003

Google Scholar

[13] Almutairi, M.D.; Mascarenhas, T.A.; Alnahdi, S.S.; He, F.; Khan, M.A. Modal Response of Hybrid Raster Orientation on Material Extrusion Printed Acrylonitrile Butadiene Styrene and Polyethylene Terephthalate Glycol under Thermo-Mechanical Loads. Polym Test 2023, 120.

DOI: 10.1016/J.POLYMERTESTING.2023.107953

Google Scholar

[14] Alshammari, Y.L.A.; He, F.; Khan, M.A. Modelling and Investigation of Crack Growth for 3D-Printed Acrylonitrile Butadiene Styrene (ABS) with Various Printing Parameters and Ambient Temperatures. Polymers (Basel) 2021, 13, 3737.

DOI: 10.3390/polym13213737

Google Scholar

[15] He, F.; Alshammari, Y.L.A.; Khan, M. The Effect of Printing Parameters on Crack Growth Rate of FDM ABS Cantilever Beam under Thermo-Mechanical Loads. In Proceedings of the Procedia Structural Integrity; 2021; Vol. 34.

DOI: 10.1016/j.prostr.2021.12.009

Google Scholar

[16] He, F.; Khan, M. Effects of Printing Parameters on the Fatigue Behaviour of 3d-Printed Abs under Dynamic Thermo-Mechanical Loads. Polymers (Basel) 2021, 13.

DOI: 10.3390/polym13142362

Google Scholar

[17] Mura, A.; Ricci, A.; Canavese, G. Investigation of Fatigue Behavior of ABS and PC-ABS Polymers at Different Temperatures. Materials 2018, 11, 1–14.

DOI: 10.3390/ma11101818

Google Scholar

[18] YI, M.; XUE, M.; CONG, P.; SONG, Y.; ZHANG, H.; WANG, L.; ZHOU, L.; LI, Y.; GUO, W. Machine Learning for Predicting Fatigue Properties of Additively Manufactured Materials. Chinese Journal of Aeronautics 2024, 37.

DOI: 10.1016/j.cja.2023.11.001

Google Scholar

[19] Tian, Y.; Zheng, B.; Khan, M.; He, F. Influence of Sliding Direction Relative to Layer Orientation on Tribological Performance, Noise, and Stability in 3D-Printed ABS Components. Tribol Int 2025, 210, 110762.

DOI: 10.1016/J.TRIBOINT.2025.110762

Google Scholar

[20] Zhang, P.; He, F.; Khan, M. Optimization of Printing Parameters for Self-Lubricating Polymeric Materials Fabricated via Fused Deposition Modelling. Polymers 2025, Vol. 17, Page 1401 2025, 17, 1401.

DOI: 10.3390/POLYM17101401

Google Scholar

[21] He, F.; Xu, C.; Khan, M. Tribological Characterisation and Modelling for the Fused Deposition Modelling of Polymeric Structures under Lubrication Conditions. Polymers (Basel) 2023, 15.

DOI: 10.3390/polym15204112

Google Scholar

[22] Shams, H.; Basit, K.; Khan, M.A.; Mansoor, A.; Saleem, S. Scalable Wear Resistant 3D Printed Slippery Liquid Infused Porous Surfaces (SLIPS). Addit Manuf 2021, 48.

DOI: 10.1016/j.addma.2021.102379

Google Scholar

[23] He, F.; Khan, M.; Aldosari, S. Interdependencies between Dynamic Response and Crack Growth in a 3D-Printed Acrylonitrile Butadiene Styrene (ABS) Cantilever Beam under Thermo-Mechanical Loads. Polymers (Basel) 2022, 14.

DOI: 10.3390/polym14050982

Google Scholar

[24] Yang, Z.; He, F.; Khan, M. An Empirical Torsional Spring Model for the Inclined Crack in a 3D-Printed Acrylonitrile Butadiene Styrene (ABS) Cantilever Beam. Polymers (Basel) 2023, 15, 496.

DOI: 10.3390/POLYM15030496

Google Scholar

[25] He, F.; Ning, H.; Khan, M. Effect of 3D Printing Process Parameters on Damping Characteristic of Cantilever Beams Fabricated Using Material Extrusion. Polymers (Basel) 2023, 15.

DOI: 10.3390/polym15020257

Google Scholar

[26] Zai, B.A.; Khan, M.A.; Khan, S.Z.; Asif, M.; Khan, K.A.; Saquib, A.N.; Mansoor, A.; Shahzad, M.; Mujtaba, A. Prediction of Crack Depth and Fatigue Life of an Acrylonitrile Butadiene Styrene Cantilever Beam Using Dynamic Response. J Test Eval 2020, 48, 20180674.

DOI: 10.1520/JTE20180674

Google Scholar

[27] Baqasah, H.; He, F.; Zai, B.A.; Asif, M.; Khan, K.A.; Thakur, V.K.; Khan, M.A. In-Situ Dynamic Response Measurement for Damage Quantification of 3D Printed ABS Cantilever Beam under Thermomechanical Load. Polymers (Basel) 2019, 11.

DOI: 10.3390/polym11122079

Google Scholar

[28] Asli, S.; Khan, B.; Potential, M.; Azouz, Z.; Honarvar, B.; Khan, M. Potential of Non-Contact Dynamic Response Measurements for Predicting Small Size or Hidden Damages in Highly Damped Structures. Sensors 2024, Vol. 24, Page 5871 2024, 24, 5871.

DOI: 10.3390/S24185871

Google Scholar

[29] Francese, A.; Khan, M.; He, F. Role of Dynamic Response in Inclined Transverse Crack Inspection for 3D-Printed Polymeric Beam with Metal Stiffener. Materials 2023, 16.

DOI: 10.3390/ma16083095

Google Scholar

[30] Almutairi, M.D.; Aria, A.I.; Thakur, V.K.; Khan, M.A. Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality. Polymers (Basel) 2020, 12.

DOI: 10.3390/polym12071534

Google Scholar

[31] Atwah, A.A.; Khan, M.A. Influence of Microscopic Features on the Self-Cleaning Ability of Textile Fabrics. Textile Research Journal 2023, 93.

DOI: 10.1177/00405175211069881

Google Scholar

[32] Shams, H.; Basit, K.; Khan, M.A.; Saleem, S.; Mansoor, A. Realizing Surface Amphiphobicity Using 3D Printing Techniques: A Critical Move towards Manufacturing Low-Cost Reentrant Geometries. Addit Manuf 2021, 38.

DOI: 10.1016/j.addma.2020.101777

Google Scholar

[33] Almutairi, M.D.; He, F.; Alshammari, Y.L.; Alnahdi, S.S.; Khan, M.A. Analysis of the Self-Healing Capability of Thermoplastic Elastomer Capsules in a Polymeric Beam Structure Based on Strain Energy Release Behaviour during Crack Growth. Polymers (Basel) 2023, 15.

DOI: 10.3390/polym15163384

Google Scholar

[34] Vanaei, H.R.; Khelladi, S.; Tcharkhtchi, A.; Almutairi, M.D.; Alnahdi, S.; Khan, M.A. Strain Release Behaviour during Crack Growth of a Polymeric Beam under Elastic Loads for Self-Healing. Polymers 2022, Vol. 14, Page 3102 2022, 14, 3102.

DOI: 10.3390/POLYM14153102

Google Scholar

[35] Chan, K.P.; He, F.; Atwah, A.A.; Khan, M. Experimental Investigation of Self-Cleaning Behaviour of 3D-Printed Textile Fabrics with Various Printing Parameters. Polym Test 2023, 107941.

DOI: 10.1016/J.POLYMERTESTING.2023.107941

Google Scholar

[36] Hasdiansah, H.; Yaqin, R.I.; Pristiansyah, P.; Umar, M.L.; Priyambodo, B.H. FDM-3D Printing Parameter Optimization Using Taguchi Approach on Surface Roughness of Thermoplastic Polyurethane Parts. International Journal on Interactive Design and Manufacturing 2023, 17.

DOI: 10.1007/s12008-023-01304-w

Google Scholar