[1]
F. Calignano and al.: Overview on additive manufacturing technologies. Proc. IEEE. 105, 593–612 (2017).
DOI: 10.1109/JPROC.2016.2625098
Google Scholar
[2]
V. H. Dao, K. B. Yoon, H. S. Yun, H. Kwon, K.-O. Bae, S. H. Nahm.: Impact of hydrogen-assisted cracking on the mechanical properties of 316L stainless steel produced by selective laser melting using an in-situ small punch test. Mater. Sci. Eng (2025).
DOI: 10.1016/j.msea.2025.148557
Google Scholar
[3]
Y. Zhang, L. Peng, Y. Wang, and C. Ye.: Improving surface integrity and wear resistance of selective laser melted 316L stainless steel using ultrasonic nanocrystal surface modification. Procedia CIRP. 123, 481‑486 (2024).
DOI: 10.1016/j.procir.2024.05.084
Google Scholar
[4]
E. Uhlmann and Y. Saber.: Mechanical properties of steel–copper multi-material samples built by laser powder bed fusion using a graded energy input. Prog. Addit. Manuf. 10, 475‑489 (2025).
DOI: 10.1007/s40964-024-00636-7
Google Scholar
[5]
A. Abouchenari, M. J. Jalilpour, and M. R. Ahmadpour Yazdi.: Additive manufacturing of AISI 304L stainless steel: A review of processing parameters and mechanical performance. Synth. Sinter. 4, 87‑100 (2024).
DOI: 10.53063/synsint.2024.42230
Google Scholar
[6]
A. Bandyopadhyay, Y. Zhang, and B. Onuike.: Additive manufacturing of bimetallic structures. Virtual Phys. Prototyp. 17, 256‑294 (2022).
DOI: 10.1080/17452759.2022.2040738
Google Scholar
[7]
Z. Li and al.: Selective laser melting of 316L–CuCrZr bimetallic structure via IN718 transition layer. J. Mater. Res. Technol. 25, 3819‑3834 (2023).
DOI: 10.1016/j.jmrt.2023.06.196
Google Scholar
[8]
X. Ju and al.: Parameter Design and Study of Microstructure, Mechanical Properties and Permeability of 316l Porous Scaffolds Fabricated by Selective Laser Melting Technology. Materials. 27, (2024).
DOI: 10.1590/1980-5373-mr-2024-0009
Google Scholar
[9]
A. Cunha and al.: 420 stainless steel-Cu parts fabricated using 3D Multi-Material Laser Powder Bed Fusion: a new solution for plastic injection molds. Mater. Today Commun. 32, (2022).
DOI: 10.1016/j.mtcomm.2022.103852
Google Scholar
[10]
M. Abdelhafiz, K. S. Al-Rubaie, A. Emadi, M. A. Elbestawi.: Process–Structure–Property Relationships of Copper Parts Manufactured by Laser Powder Bed Fusion. Materials. 14, 2945 (2021).
DOI: 10.3390/ma14112945
Google Scholar
[11]
A. Marques, Ó. Carvalho, F. S. Silva, F. Bartolomeu, S. Pereira, P. Alexandrino.: Inconel 718-Copper bimetallic joints fabricated by 3D multi-material laser powder bed fusion for aerospace components. (2023), https://hdl.handle.net/1822/82963.
DOI: 10.1007/s00170-022-10011-x
Google Scholar
[12]
I. Meyer, M. Oel, T. Ehlers, R. Lachmayer.: Additive manufacturing of multi-material parts – Design guidelines for manufacturing of 316L/CuCrZr in laser powder bed fusion. Heliyon. 9, (2023). doi: 10.1016/j.heliyon. 2023.e18301.
DOI: 10.1016/j.heliyon.2023.e18301
Google Scholar
[13]
Z. Sun and al.: Laser powder bed fusion of 316L stainless steel and K220 copper multi-material. Virtual Phys. Prototyp. 19, (2024).
DOI: 10.1080/17452759.2024.2356078
Google Scholar
[14]
O.O. Salman and al.: Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering. 748, 205-212 (2019).
DOI: 10.1016/j.msea.2019.01.110
Google Scholar
[15]
X. Lingqin, C. Guang, Z. Luyu, L. Pan.: Explore the feasibility of fabricating pure copper parts with low-laser energy by selective laser melting. Mater. Res. Express. 7, (2020).
DOI: 10.1088/2053-1591/abbd08
Google Scholar
[16]
Hai Deng and al.: Orientation dependence of microstructure and mechanical property in selective laser-melted Inconel 718 alloy. Materials Characterization.220, (2025). https://doi.org/10.1016/j. matchar.2024.114664.
DOI: 10.1016/j.matchar.2024.114664
Google Scholar
[17]
X. Hu, S. Xu, X. Ma, G. Ren, J. Li.: Effect of Heat Treatment Cooling Method on the Organization and Properties of 316L Negative Re-entrant Hexagonal Honeycomb Porous Bone Scaffolds by Selective Laser Melting. J. Mater. Eng. Perform. (2024).
DOI: 10.1007/s11665-024-10519-1
Google Scholar
[18]
K. Lee, V. V. K. Doddapaneni, S. Mirzababaei, S. Pasebani, C.-H. Chang, B. K. Paul.: Multi-metal additive manufacturing of selectively doped 316 L stainless steel-copper composite using hybrid laser powder bed fusion. Addit. Manuf. 86, (2024).
DOI: 10.1016/j.addma.2024.104202
Google Scholar
[19]
L. B. Peral, A. Díaz, P. Ebrahimzadeh, I. Fernández-Pariente, J. Alegre, I. I. Cuesta.: Hydrogen Embrittlement of AISI 316L steel produced by Selective Laser Melting. Procedia Struct. Integr. 53, 52‑57 (2024).
DOI: 10.1016/j.prostr.2024.01.007
Google Scholar
[20]
X. Hu and al.: Effects of Process Parameters on the Microstructure and Properties of Selective Laser Melting 316L Negative Re-entrant Hexagonal Honeycomb Porous Bone Scaffolds. J. Mater. Eng. Perform. 34, 1927‑1943 (2025).
DOI: 10.1007/s11665-024-09220-0
Google Scholar
[21]
M. A. Aripin and al.: Effect of Scanning Speed on Microstructure Profile of Selective Laser Melted Stainless Steel 316L. J. Kejuruter. 36, 2115–2120 (2024).
DOI: 10.17576/jkukm-2024-36(5)-28
Google Scholar
[22]
D. Xu and al.: Evaluation of 3D printed 316L stainless steel microstructure and mechanical property by laser ultrasonics. Nondestruct. Test. Eval. 40, 3174‑3190 (2025).
DOI: 10.1080/10589759.2024.2400220
Google Scholar
[23]
S. Yazdani, S. Tekeli, T. Yilmaz, M. N. Adanir.: Influence of Annealing Heat Treatment on the Microstructure and Mechanical Properties of Multilayer 316L-TiC Composite Fabricated by Selective Laser Melting. J. Mater. Eng. Perform. 34, 5597‑5605 (2025).
DOI: 10.1007/s11665-024-09580-7
Google Scholar
[24]
Z.-P. Zhou, Z.-H. Tan, J.-L. Lv, S.-Y. Zhang, D. Liu.: Effect of annealing and strain rate on the microstructure and mechanical properties of austenitic stainless steel 316L manufactured by selective laser melting. Adv. Manuf.13, 634‑654 (2025).
DOI: 10.1007/s40436-024-00528-7
Google Scholar
[25]
F. Feng and al.: Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel. J. Mater. Eng. Perform. 34, 13438‑13451 (2025).
DOI: 10.1007/s11665-024-10110-8
Google Scholar
[26]
X. Ju, X. Song, S. Xu, X. Hu, R. Liu, K. Sun.: Influence of process parameters on the organization and properties of 316L-SCBCC bracket formed by selective zone laser melting. Mater. Res. Express. 11, (2024).
DOI: 10.1088/2053-1591/ad7d6d
Google Scholar
[27]
K. Sternadelova, H. Krupova, J. Hajnys, J. Mesicek, P. Mohyla.: Surface Pretreatment of Selectively Laser Melted 316L Stainless Steel Substrate and Its Effect on the Quality of the Vitreous Enamel Coating. MM Sci. J. 7210–7215 (2024).
DOI: 10.17973/MMSJ.2024_02_2023143
Google Scholar
[28]
M. Omidi, A. Mostafapour, A. Ebrahimpour.: Experimental study on the effects of FSP and nanoparticle dispersion on the mechanical properties and microstructure of 316L stainless steel produced by SLM. Weld. World. 69, 571‑588 (2025).
DOI: 10.1007/s40194-024-01915-1
Google Scholar
[29]
F. Sebek and al.: Plasticity and ductile fracture of conventionally manufactured AISI 316L compared to one produced by selective laser melting with and without machining. Int. J. Adv. Manuf. Technol.137, 3933‑3948 (2025).
DOI: 10.1007/s00170-025-15387-0
Google Scholar
[30]
Yuan, S., Wu, J., Wang, X., Chen, H., Huang, F., Yu, C., Li, N., Xu, D., Yan, X., & Yin, A.: Effect of Annealing Temperature on Microstructure and Properties of Selective Laser Melted 316L Stainless Steel. SSRN. (2025).
DOI: 10.2139/ssrn.5263647
Google Scholar
[31]
S. Yazdani, S. Tekeli, H. Rabieifar, E. Akbarzadeh.: Fracture and Wear Behavior of Functionally Graded 316L–TiC Composite Fabricated by Selective Laser Melting Additive Manufacturing. Steel Res. Int.95, (2024).
DOI: 10.1002/srin.202400100
Google Scholar
[32]
C. Singer and al.: Multi-material laser powder bed fusion: The effect of cross-contaminations of Cu particles in AlSi10Mg feedstock on the mechanical properties of the part. Procedia Struct. Integr. 68, 854‑860 (2025).
DOI: 10.1016/j.prostr.2025.06.141
Google Scholar
[33]
J. M. Crego Lozares, A. E. Medvedev, K. Asami, C. Emmelmann, A. Molotnikov, M. Brandt.: Exploring the Influence of PBF-LB/M Process Parameters in Multi-material AM: A Single-Track Study on CuCrZr Deposited onto IN718 Substrate. J. Jpn. Soc. Powder Powder Metall. 72, 91‑97 (2025).
DOI: 10.2497/jjspm.14B-T6-07
Google Scholar
[34]
Y. Wei and al.: Melt pool behavior of pure copper-stainless steel multi-materials fabricated by the coaxial hybrid blue-infrared lasers additive manufacturing. J. Manuf. Process. 125, 50‑63 (2024).
DOI: 10.1016/j.jmapro.2024.07.049
Google Scholar
[35]
A. Marques, A. Cunha, M. Gasik, O. Carvalho, F. S. Silva, F. Bartolomeu.: 3D multi-material laser powder bed fusion: Ti6Al4V–CuNi2SiCr parts for aerospace applications. Prog. Addit. Manuf. 9, 391‑400 (2024).
DOI: 10.1007/s40964-023-00460-5
Google Scholar
[36]
A. Marques, A. Cunha, M. Gasik, O. Carvalho, F. S. Silva, F. Bartolomeu.: Inconel 718–copper parts fabricated by 3D multi-material laser powder bed fusion: a novel technological and designing approach for rocket engine. Int. J. Adv. Manuf. Technol.122, 2113‑2123 (2022).
DOI: 10.1007/s00170-022-10011-x
Google Scholar
[37]
T. De Terris, T. Baffie, C. Ribiere.: Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies. Int. J. Mater. Form.16, (2023).
DOI: 10.1007/s12289-023-01755-2
Google Scholar
[38]
E. Sharabian, M. Leary, D. Fraser, S. Gulizia.: Electron beam powder bed fusion of copper components: a review of mechanical properties and research opportunities. Int. J. Adv. Manuf. Technol.122, 513‑532 (2022).
DOI: 10.1007/s00170-022-09922-6
Google Scholar
[39]
X. Li, D. Sukhomlinov, Z. Que.: Microstructure and thermal properties of dissimilar M300-CuCr1Zr alloys by multi-material laser-based powder bed fusion. Int. J. Miner. Metall. Mater. 31, 118‑128 (2024).
DOI: 10.1007/s12613-023-2747-x
Google Scholar
[40]
T. Fiedler, M. Jahnig Domingues, C. Winter, J. Rosler.: High conductive copper alloys for additive manufacturing. Prog. Addit. Manuf. 9, 1643‑1652 (2024).
DOI: 10.1007/s40964-023-00527-3
Google Scholar
[41]
Y. Liu and al.: Manufacturing of high strength and high conductivity copper with laser powder bed fusion. Nat. Commun. 15, (2024).
DOI: 10.1038/s41467-024-45732-y
Google Scholar
[42]
M.-S. Kim, Y. H. Cho, H. Jang.: Numerical Modeling of Stress-State Dependent Damage Evolution and Ductile Fracture of Austenitic Stainless Steel. (2024).
DOI: 10.2139/ssrn.5046353
Google Scholar
[43]
J.-P. Choi and al.: Densification Behavior of 316L Stainless Steel Parts Fabricated by Selective Laser Melting by Variation in Laser Energy Density. Mater. Trans. 57, 1952‑1959 (2016).
DOI: 10.2320/matertrans.M2016284
Google Scholar
[44]
J. Guan and Q. Wang.: Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review. Materials, 16, (2023).
DOI: 10.3390/ma16072757
Google Scholar
[45]
F. Foadian, R. Kremer, M. Post, A. Taghizadeh Tabrizi, H. Aghajani.: Investigation of In-Situ Low Copper Alloying of 316L Using the Powder Bed Fusion Process. Solids. 4,156‑165 (2023).
DOI: 10.3390/solids4030010
Google Scholar
[46]
A. Behjat, M. Shamanian, L. Iuliano, A. Saboori.: Laser powder bed fusion in situ alloying of AISI 316L-2.5%Cu alloy: microstructure and mechanical properties evolution. Prog. Addit. Manuf. 9, 2031‑2039 (2024).
DOI: 10.1007/s40964-023-00557-x
Google Scholar