Influence of Laser Power and Transition Zone Distance on the Tensile Behaviour of a Bimetallic Specimen Manufactured by Selective Laser Melting

Article Preview

Abstract:

This study uses numerical simulation to examine the influence of variations in laser power and transition zone length on the tensile behavior of bimetallic samples designed to be manufactured by selective laser melting (SLM). The materials studied are 316L stainless steel-copper, chosen for their complementary mechanical properties and functional relevance in high-stress applications. The transition between the two materials was modeled by modulating the laser power according to different profiles (linear, concave or convex) and over different lengths (d(x) = 0 mm, 10 mm, 20 mm) in order to evaluate their impact on the simulated mechanical performance. The numerical results show that a gradual transition in laser power, combined with an extended transition zone, significantly improves stress distribution and leads to better mechanical integrity. Simulations performed in ANSYS provide an in-depth analysis of stress fields and highlight the crucial role of manufacturing parameter management. This study thus highlights the importance of precise control of manufacturing parameters in the 3D printing of bimetallic components and demonstrates, through numerical modeling, that optimized transition management can improve the mechanical integrity of parts produced by SLM. Experimental validation of these results will be an essential prospect for future work.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-98

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Calignano and al.: Overview on additive manufacturing technologies. Proc. IEEE. 105, 593–612 (2017).

DOI: 10.1109/JPROC.2016.2625098

Google Scholar

[2] V. H. Dao, K. B. Yoon, H. S. Yun, H. Kwon, K.-O. Bae, S. H. Nahm.: Impact of hydrogen-assisted cracking on the mechanical properties of 316L stainless steel produced by selective laser melting using an in-situ small punch test. Mater. Sci. Eng (2025).

DOI: 10.1016/j.msea.2025.148557

Google Scholar

[3] Y. Zhang, L. Peng, Y. Wang, and C. Ye.: Improving surface integrity and wear resistance of selective laser melted 316L stainless steel using ultrasonic nanocrystal surface modification. Procedia CIRP. 123, 481‑486 (2024).

DOI: 10.1016/j.procir.2024.05.084

Google Scholar

[4] E. Uhlmann and Y. Saber.: Mechanical properties of steel–copper multi-material samples built by laser powder bed fusion using a graded energy input. Prog. Addit. Manuf. 10, 475‑489 (2025).

DOI: 10.1007/s40964-024-00636-7

Google Scholar

[5] A. Abouchenari, M. J. Jalilpour, and M. R. Ahmadpour Yazdi.: Additive manufacturing of AISI 304L stainless steel: A review of processing parameters and mechanical performance. Synth. Sinter. 4, 87‑100 (2024).

DOI: 10.53063/synsint.2024.42230

Google Scholar

[6] A. Bandyopadhyay, Y. Zhang, and B. Onuike.: Additive manufacturing of bimetallic structures. Virtual Phys. Prototyp. 17, 256‑294 (2022).

DOI: 10.1080/17452759.2022.2040738

Google Scholar

[7] Z. Li and al.: Selective laser melting of 316L–CuCrZr bimetallic structure via IN718 transition layer. J. Mater. Res. Technol. 25, 3819‑3834 (2023).

DOI: 10.1016/j.jmrt.2023.06.196

Google Scholar

[8] X. Ju and al.: Parameter Design and Study of Microstructure, Mechanical Properties and Permeability of 316l Porous Scaffolds Fabricated by Selective Laser Melting Technology. Materials. 27, (2024).

DOI: 10.1590/1980-5373-mr-2024-0009

Google Scholar

[9] A. Cunha and al.: 420 stainless steel-Cu parts fabricated using 3D Multi-Material Laser Powder Bed Fusion: a new solution for plastic injection molds. Mater. Today Commun. 32, (2022).

DOI: 10.1016/j.mtcomm.2022.103852

Google Scholar

[10] M. Abdelhafiz, K. S. Al-Rubaie, A. Emadi, M. A. Elbestawi.: Process–Structure–Property Relationships of Copper Parts Manufactured by Laser Powder Bed Fusion. Materials. 14, 2945 (2021).

DOI: 10.3390/ma14112945

Google Scholar

[11] A. Marques, Ó. Carvalho, F. S. Silva, F. Bartolomeu, S. Pereira, P. Alexandrino.: Inconel 718-Copper bimetallic joints fabricated by 3D multi-material laser powder bed fusion for aerospace components. (2023), https://hdl.handle.net/1822/82963.

DOI: 10.1007/s00170-022-10011-x

Google Scholar

[12] I. Meyer, M. Oel, T. Ehlers, R. Lachmayer.: Additive manufacturing of multi-material parts – Design guidelines for manufacturing of 316L/CuCrZr in laser powder bed fusion. Heliyon. 9, (2023). doi: 10.1016/j.heliyon. 2023.e18301.

DOI: 10.1016/j.heliyon.2023.e18301

Google Scholar

[13] Z. Sun and al.: Laser powder bed fusion of 316L stainless steel and K220 copper multi-material. Virtual Phys. Prototyp. 19, (2024).

DOI: 10.1080/17452759.2024.2356078

Google Scholar

[14] O.O. Salman and al.: Effect of heat treatment on microstructure and mechanical properties of 316L steel synthesized by selective laser melting. Materials Science and Engineering. 748, 205-212 (2019).

DOI: 10.1016/j.msea.2019.01.110

Google Scholar

[15] X. Lingqin, C. Guang, Z. Luyu, L. Pan.: Explore the feasibility of fabricating pure copper parts with low-laser energy by selective laser melting. Mater. Res. Express. 7, (2020).

DOI: 10.1088/2053-1591/abbd08

Google Scholar

[16] Hai Deng and al.: Orientation dependence of microstructure and mechanical property in selective laser-melted Inconel 718 alloy. Materials Characterization.220, (2025). https://doi.org/10.1016/j. matchar.2024.114664.

DOI: 10.1016/j.matchar.2024.114664

Google Scholar

[17] X. Hu, S. Xu, X. Ma, G. Ren, J. Li.: Effect of Heat Treatment Cooling Method on the Organization and Properties of 316L Negative Re-entrant Hexagonal Honeycomb Porous Bone Scaffolds by Selective Laser Melting. J. Mater. Eng. Perform. (2024).

DOI: 10.1007/s11665-024-10519-1

Google Scholar

[18] K. Lee, V. V. K. Doddapaneni, S. Mirzababaei, S. Pasebani, C.-H. Chang, B. K. Paul.: Multi-metal additive manufacturing of selectively doped 316 L stainless steel-copper composite using hybrid laser powder bed fusion. Addit. Manuf. 86, (2024).

DOI: 10.1016/j.addma.2024.104202

Google Scholar

[19] L. B. Peral, A. Díaz, P. Ebrahimzadeh, I. Fernández-Pariente, J. Alegre, I. I. Cuesta.: Hydrogen Embrittlement of AISI 316L steel produced by Selective Laser Melting. Procedia Struct. Integr. 53, 52‑57 (2024).

DOI: 10.1016/j.prostr.2024.01.007

Google Scholar

[20] X. Hu and al.: Effects of Process Parameters on the Microstructure and Properties of Selective Laser Melting 316L Negative Re-entrant Hexagonal Honeycomb Porous Bone Scaffolds. J. Mater. Eng. Perform. 34, 1927‑1943 (2025).

DOI: 10.1007/s11665-024-09220-0

Google Scholar

[21] M. A. Aripin and al.: Effect of Scanning Speed on Microstructure Profile of Selective Laser Melted Stainless Steel 316L. J. Kejuruter. 36, 2115–2120 (2024).

DOI: 10.17576/jkukm-2024-36(5)-28

Google Scholar

[22] D. Xu and al.: Evaluation of 3D printed 316L stainless steel microstructure and mechanical property by laser ultrasonics. Nondestruct. Test. Eval. 40, 3174‑3190 (2025).

DOI: 10.1080/10589759.2024.2400220

Google Scholar

[23] S. Yazdani, S. Tekeli, T. Yilmaz, M. N. Adanir.: Influence of Annealing Heat Treatment on the Microstructure and Mechanical Properties of Multilayer 316L-TiC Composite Fabricated by Selective Laser Melting. J. Mater. Eng. Perform. 34, 5597‑5605 (2025).

DOI: 10.1007/s11665-024-09580-7

Google Scholar

[24] Z.-P. Zhou, Z.-H. Tan, J.-L. Lv, S.-Y. Zhang, D. Liu.: Effect of annealing and strain rate on the microstructure and mechanical properties of austenitic stainless steel 316L manufactured by selective laser melting. Adv. Manuf.13, 634‑654 (2025).

DOI: 10.1007/s40436-024-00528-7

Google Scholar

[25] F. Feng and al.: Effect of Deep Cryogenic Treatment on the Mechanical Properties and Defect Tolerance of Selective-Laser-Melted 316L Stainless Steel. J. Mater. Eng. Perform. 34, 13438‑13451 (2025).

DOI: 10.1007/s11665-024-10110-8

Google Scholar

[26] X. Ju, X. Song, S. Xu, X. Hu, R. Liu, K. Sun.: Influence of process parameters on the organization and properties of 316L-SCBCC bracket formed by selective zone laser melting. Mater. Res. Express. 11, (2024).

DOI: 10.1088/2053-1591/ad7d6d

Google Scholar

[27] K. Sternadelova, H. Krupova, J. Hajnys, J. Mesicek, P. Mohyla.: Surface Pretreatment of Selectively Laser Melted 316L Stainless Steel Substrate and Its Effect on the Quality of the Vitreous Enamel Coating. MM Sci. J. 7210–7215 (2024).

DOI: 10.17973/MMSJ.2024_02_2023143

Google Scholar

[28] M. Omidi, A. Mostafapour, A. Ebrahimpour.: Experimental study on the effects of FSP and nanoparticle dispersion on the mechanical properties and microstructure of 316L stainless steel produced by SLM. Weld. World. 69, 571‑588 (2025).

DOI: 10.1007/s40194-024-01915-1

Google Scholar

[29] F. Sebek and al.: Plasticity and ductile fracture of conventionally manufactured AISI 316L compared to one produced by selective laser melting with and without machining. Int. J. Adv. Manuf. Technol.137, 3933‑3948 (2025).

DOI: 10.1007/s00170-025-15387-0

Google Scholar

[30] Yuan, S., Wu, J., Wang, X., Chen, H., Huang, F., Yu, C., Li, N., Xu, D., Yan, X., & Yin, A.: Effect of Annealing Temperature on Microstructure and Properties of Selective Laser Melted 316L Stainless Steel. SSRN. (2025).

DOI: 10.2139/ssrn.5263647

Google Scholar

[31] S. Yazdani, S. Tekeli, H. Rabieifar, E. Akbarzadeh.: Fracture and Wear Behavior of Functionally Graded 316L–TiC Composite Fabricated by Selective Laser Melting Additive Manufacturing. Steel Res. Int.95, (2024).

DOI: 10.1002/srin.202400100

Google Scholar

[32] C. Singer and al.: Multi-material laser powder bed fusion: The effect of cross-contaminations of Cu particles in AlSi10Mg feedstock on the mechanical properties of the part. Procedia Struct. Integr. 68, 854‑860 (2025).

DOI: 10.1016/j.prostr.2025.06.141

Google Scholar

[33] J. M. Crego Lozares, A. E. Medvedev, K. Asami, C. Emmelmann, A. Molotnikov, M. Brandt.: Exploring the Influence of PBF-LB/M Process Parameters in Multi-material AM: A Single-Track Study on CuCrZr Deposited onto IN718 Substrate. J. Jpn. Soc. Powder Powder Metall. 72, 91‑97 (2025).

DOI: 10.2497/jjspm.14B-T6-07

Google Scholar

[34] Y. Wei and al.: Melt pool behavior of pure copper-stainless steel multi-materials fabricated by the coaxial hybrid blue-infrared lasers additive manufacturing. J. Manuf. Process. 125, 50‑63 (2024).

DOI: 10.1016/j.jmapro.2024.07.049

Google Scholar

[35] A. Marques, A. Cunha, M. Gasik, O. Carvalho, F. S. Silva, F. Bartolomeu.: 3D multi-material laser powder bed fusion: Ti6Al4V–CuNi2SiCr parts for aerospace applications. Prog. Addit. Manuf. 9, 391‑400 (2024).

DOI: 10.1007/s40964-023-00460-5

Google Scholar

[36] A. Marques, A. Cunha, M. Gasik, O. Carvalho, F. S. Silva, F. Bartolomeu.: Inconel 718–copper parts fabricated by 3D multi-material laser powder bed fusion: a novel technological and designing approach for rocket engine. Int. J. Adv. Manuf. Technol.122, 2113‑2123 (2022).

DOI: 10.1007/s00170-022-10011-x

Google Scholar

[37] T. De Terris, T. Baffie, C. Ribiere.: Additive manufacturing of pure copper: a review and comparison of physical, microstructural, and mechanical properties of samples manufactured with Laser-Powder Bed Fusion (L-PBF), Electron Beam Melting (EBM) and Metal Fused Deposition Modelling (MFDM) technologies. Int. J. Mater. Form.16, (2023).

DOI: 10.1007/s12289-023-01755-2

Google Scholar

[38] E. Sharabian, M. Leary, D. Fraser, S. Gulizia.: Electron beam powder bed fusion of copper components: a review of mechanical properties and research opportunities. Int. J. Adv. Manuf. Technol.122, 513‑532 (2022).

DOI: 10.1007/s00170-022-09922-6

Google Scholar

[39] X. Li, D. Sukhomlinov, Z. Que.: Microstructure and thermal properties of dissimilar M300-CuCr1Zr alloys by multi-material laser-based powder bed fusion. Int. J. Miner. Metall. Mater. 31, 118‑128 (2024).

DOI: 10.1007/s12613-023-2747-x

Google Scholar

[40] T. Fiedler, M. Jahnig Domingues, C. Winter, J. Rosler.: High conductive copper alloys for additive manufacturing. Prog. Addit. Manuf. 9, 1643‑1652 (2024).

DOI: 10.1007/s40964-023-00527-3

Google Scholar

[41] Y. Liu and al.: Manufacturing of high strength and high conductivity copper with laser powder bed fusion. Nat. Commun. 15, (2024).

DOI: 10.1038/s41467-024-45732-y

Google Scholar

[42] M.-S. Kim, Y. H. Cho, H. Jang.: Numerical Modeling of Stress-State Dependent Damage Evolution and Ductile Fracture of Austenitic Stainless Steel. (2024).

DOI: 10.2139/ssrn.5046353

Google Scholar

[43] J.-P. Choi and al.: Densification Behavior of 316L Stainless Steel Parts Fabricated by Selective Laser Melting by Variation in Laser Energy Density. Mater. Trans. 57, 1952‑1959 (2016).

DOI: 10.2320/matertrans.M2016284

Google Scholar

[44] J. Guan and Q. Wang.: Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review. Materials, 16, (2023).

DOI: 10.3390/ma16072757

Google Scholar

[45] F. Foadian, R. Kremer, M. Post, A. Taghizadeh Tabrizi, H. Aghajani.: Investigation of In-Situ Low Copper Alloying of 316L Using the Powder Bed Fusion Process. Solids. 4,156‑165 (2023).

DOI: 10.3390/solids4030010

Google Scholar

[46] A. Behjat, M. Shamanian, L. Iuliano, A. Saboori.: Laser powder bed fusion in situ alloying of AISI 316L-2.5%Cu alloy: microstructure and mechanical properties evolution. Prog. Addit. Manuf. 9, 2031‑2039 (2024).

DOI: 10.1007/s40964-023-00557-x

Google Scholar