Impact of Dry Friction Stir Processing on Microstructure, Micro-Hardness and Tensile Characteristics of Mg-Al-Zn Alloy

Article Preview

Abstract:

Mg-Al-Zn alloy, an Mg alloy having Al and Zn as the major constituents, is exceptionally lightweight and has potential to become an essential component of modern engineering applications and healthcare systems. This paper presents valuable insights to the friction stir processing (FSP) applied to Mg-Al-Zn alloy in dry conditions. FSP induced extreme plastic deformation in the metal alloy which causes substantial microstructural alterations. These changes were investigated using optical microscope. Microstructural evaluation of FSP-processed zone indicated that average grain diameter of the FSP-processed zone increased in proportion to tool rotating speed. This is attributed to the frictional zone's degree of plastic deformation. In alignment with results obtained from optical microscopy, morphological study conducted using scanning electron microscope (SEM) also demonstrated the synthesis of refined grains. In addition, the study includes evaluation of the FSP-processed alloy's micro-hardness and tensile characteristics in contrast to the base (unprocessed) alloy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-36

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Palanikumar, K. E. Natarajan, S. Suresh, D. G. Mohan, C. Prakash, K. Kaur, Prospects of friction stir processed Mg alloys and composites-Reviews and suggestions. J. of Mater. Res. Technol. 34 (2024) 971-997.

DOI: 10.1016/j.jmrt.2024.06.087

Google Scholar

[2] S. Yue, J. Huang, Y. Ni, L. Shen, Y. Huang, D. Fan, J. Liu, Enhancing microstructural, mechanical, and tribological behavior of AZ31B magnesium alloy through friction stir processing. J. of Mater. Res. Technol. 29 (2024) 1441-1452.

DOI: 10.1016/j.jmrt.2024.01.182

Google Scholar

[3] G. K. Sharma, K. Kumar, N. S. Grewal, Microstructure refinement and augmenting mechanical properties of Mg alloy using friction stir processing. J. Mater. Eng. & Per. 34 (2025) 3391-3406.

DOI: 10.1007/s11665-024-09311-y

Google Scholar

[4] D. Harwani, V Badheka, V. Patel, W. Li, J. Andersson, Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants–A review, J. Mater. Res. Technol. 12 (2021) 2055-2075.

DOI: 10.1016/j.jmrt.2021.03.115

Google Scholar

[5] B.M. Hasani, H. Hedaiatmofidi, A. Zarebidaki, Effect of friction stir process on the microstructure and corrosion behavior of AZ91 Mg alloy, Mater. Chem. Phys. 267 (2001) 124672.

DOI: 10.1016/j.matchemphys.2021.124672

Google Scholar

[6] H. Tripathi, A. Bharti, K.K Saxena, N. Kumar, Improvement in mechanical properties of structural AZ91 magnesium alloy processed by friction stir processing, Adv. Mater. Process. Technol. 8 (2022) 1543-1556.

DOI: 10.1080/2374068x.2021.1949540

Google Scholar

[7] Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing, Corros. Sci. 138 (2008) 284-296.

DOI: 10.1016/j.corsci.2018.04.028

Google Scholar

[8] F. Chai, F. Yan, W. Wang, Q. Lu, X. Fang, Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing, J. Mater. Res. 33 (2008) 1789-1796.

DOI: 10.1557/jmr.2018.98

Google Scholar

[9] K. Surekha, B.S. Murty, K.P. Rao, Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy, Mater. Des. 32 (2011) 4502-4508.

DOI: 10.1016/j.matdes.2011.03.033

Google Scholar

[10] S.R. Babu, S. Pavithran, M. Nithin, B. Parameshwaran, Effect of tool shoulder diameter during friction stir processing of AZ31B alloy sheets of various thicknesses, Procedia Engineering 97 (2014) 800-809.

DOI: 10.1016/j.proeng.2014.12.354

Google Scholar

[11] H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing, Wear 303 (2013) 65-77.

DOI: 10.1016/j.wear.2013.02.023

Google Scholar

[12] A.N. Albakri, B. Mansoor, H. Nassar, M.K. Khraisheh, Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—a numerical and experimental investigation, J. Mater. Process. Technol. 213 (2013) 279-290.

DOI: 10.1016/j.jmatprotec.2012.09.015

Google Scholar

[13] P. Asadi, R.A. Mahdavinejad, S. Tutunchilar, Simulation and experimental investigation of FSP of AZ91 magnesium alloy, Mater. Sci. Eng. A 528 (2011) 6469-6477.

DOI: 10.1016/j.msea.2011.05.035

Google Scholar

[14] V. Jain, R.S. Mishra, A.K. Gupta, Study of β-precipitates and their effect on the directional yield asymmetry of friction stir processed and aged AZ91C alloy, Mater. Sci. Eng. A 560 (2013) 500-509.

DOI: 10.1016/j.msea.2012.09.095

Google Scholar

[15] A.H. Feng, Z.Y. Ma, Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing, Scripta Mater. 56 (2007) 397-400.

DOI: 10.1016/j.scriptamat.2006.10.035

Google Scholar

[16] K. Li, X. Liu, Y. Zhao, Research status and prospect of friction stir processing technology, Coatings. 9 (2019) 129.

DOI: 10.3390/coatings9020129

Google Scholar

[17] V.V. Patel, V. Badheka, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications, Metallography, Microstructure, and Analysis 5 (2016) 278-293.

DOI: 10.1007/s13632-016-0285-x

Google Scholar

[18] R.V. Vignesh, R. Padmanaban, M. Govindaraju, Investigations on the surface topography, corrosion behavior, and biocompatibility of friction stir processed magnesium alloy AZ91D, Surf. Topogr.: Metrol. Prop. 7 (2019) 025020.

DOI: 10.1088/2051-672x/ab269c

Google Scholar

[19] B.M. Bharathi, R.V. Vignesh, R. Padmanaban, M. Govindaraju, Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy, Aust. J. Mech. Eng. 20 (2022) 1479-1488.

DOI: 10.1080/14484846.2020.1815999

Google Scholar

[20] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.

DOI: 10.1016/j.biomaterials.2006.01.017

Google Scholar

[21] G.R. Cui, Z.Y. Ma, S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy, Acta Materialia 57 (2009) 5718-5729.

DOI: 10.1016/j.actamat.2009.07.065

Google Scholar

[22] M.V. Naik, N. Narasaiah, P. Chakravarthy, R.A. Kumar, Microstructure and mechanical properties of friction stir processed Zn-Mg biodegradable alloys, J. Alloys Compd. 970 (2024) 172160.

DOI: 10.1016/j.jallcom.2023.172160

Google Scholar

[23] B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential, Mater. Sci. Eng. A 302 (2001) 37-45.

Google Scholar

[24] Z.Y. Ma, Friction stir processing technology: a review, Metall. Mater. Trans. A 39 (2008) 642-658.

DOI: 10.1007/s11661-007-9459-0

Google Scholar

[25] E.T. Akinlabi, R.M. Mahamood, Solid-state Welding: Friction and Friction Stir Welding Processes, Springer International Publishing, New York, 2020.

DOI: 10.1007/978-3-030-37015-2_3

Google Scholar