[1]
K. Palanikumar, K. E. Natarajan, S. Suresh, D. G. Mohan, C. Prakash, K. Kaur, Prospects of friction stir processed Mg alloys and composites-Reviews and suggestions. J. of Mater. Res. Technol. 34 (2024) 971-997.
DOI: 10.1016/j.jmrt.2024.06.087
Google Scholar
[2]
S. Yue, J. Huang, Y. Ni, L. Shen, Y. Huang, D. Fan, J. Liu, Enhancing microstructural, mechanical, and tribological behavior of AZ31B magnesium alloy through friction stir processing. J. of Mater. Res. Technol. 29 (2024) 1441-1452.
DOI: 10.1016/j.jmrt.2024.01.182
Google Scholar
[3]
G. K. Sharma, K. Kumar, N. S. Grewal, Microstructure refinement and augmenting mechanical properties of Mg alloy using friction stir processing. J. Mater. Eng. & Per. 34 (2025) 3391-3406.
DOI: 10.1007/s11665-024-09311-y
Google Scholar
[4]
D. Harwani, V Badheka, V. Patel, W. Li, J. Andersson, Developing superplasticity in magnesium alloys with the help of friction stir processing and its variants–A review, J. Mater. Res. Technol. 12 (2021) 2055-2075.
DOI: 10.1016/j.jmrt.2021.03.115
Google Scholar
[5]
B.M. Hasani, H. Hedaiatmofidi, A. Zarebidaki, Effect of friction stir process on the microstructure and corrosion behavior of AZ91 Mg alloy, Mater. Chem. Phys. 267 (2001) 124672.
DOI: 10.1016/j.matchemphys.2021.124672
Google Scholar
[6]
H. Tripathi, A. Bharti, K.K Saxena, N. Kumar, Improvement in mechanical properties of structural AZ91 magnesium alloy processed by friction stir processing, Adv. Mater. Process. Technol. 8 (2022) 1543-1556.
DOI: 10.1080/2374068x.2021.1949540
Google Scholar
[7]
Q. Liu, Q.X. Ma, G.Q. Chen, X. Cao, S. Zhang, J.L. Pan, G. Zhang, Q.Y. Shi, Enhanced corrosion resistance of AZ91 magnesium alloy through refinement and homogenization of surface microstructure by friction stir processing, Corros. Sci. 138 (2008) 284-296.
DOI: 10.1016/j.corsci.2018.04.028
Google Scholar
[8]
F. Chai, F. Yan, W. Wang, Q. Lu, X. Fang, Microstructures and mechanical properties of AZ91 alloys prepared by multi-pass friction stir processing, J. Mater. Res. 33 (2008) 1789-1796.
DOI: 10.1557/jmr.2018.98
Google Scholar
[9]
K. Surekha, B.S. Murty, K.P. Rao, Comparison of corrosion behaviour of friction stir processed and laser melted AA 2219 aluminium alloy, Mater. Des. 32 (2011) 4502-4508.
DOI: 10.1016/j.matdes.2011.03.033
Google Scholar
[10]
S.R. Babu, S. Pavithran, M. Nithin, B. Parameshwaran, Effect of tool shoulder diameter during friction stir processing of AZ31B alloy sheets of various thicknesses, Procedia Engineering 97 (2014) 800-809.
DOI: 10.1016/j.proeng.2014.12.354
Google Scholar
[11]
H.S. Arora, H. Singh, B.K. Dhindaw, Wear behaviour of a Mg alloy subjected to friction stir processing, Wear 303 (2013) 65-77.
DOI: 10.1016/j.wear.2013.02.023
Google Scholar
[12]
A.N. Albakri, B. Mansoor, H. Nassar, M.K. Khraisheh, Thermo-mechanical and metallurgical aspects in friction stir processing of AZ31 Mg alloy—a numerical and experimental investigation, J. Mater. Process. Technol. 213 (2013) 279-290.
DOI: 10.1016/j.jmatprotec.2012.09.015
Google Scholar
[13]
P. Asadi, R.A. Mahdavinejad, S. Tutunchilar, Simulation and experimental investigation of FSP of AZ91 magnesium alloy, Mater. Sci. Eng. A 528 (2011) 6469-6477.
DOI: 10.1016/j.msea.2011.05.035
Google Scholar
[14]
V. Jain, R.S. Mishra, A.K. Gupta, Study of β-precipitates and their effect on the directional yield asymmetry of friction stir processed and aged AZ91C alloy, Mater. Sci. Eng. A 560 (2013) 500-509.
DOI: 10.1016/j.msea.2012.09.095
Google Scholar
[15]
A.H. Feng, Z.Y. Ma, Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing, Scripta Mater. 56 (2007) 397-400.
DOI: 10.1016/j.scriptamat.2006.10.035
Google Scholar
[16]
K. Li, X. Liu, Y. Zhao, Research status and prospect of friction stir processing technology, Coatings. 9 (2019) 129.
DOI: 10.3390/coatings9020129
Google Scholar
[17]
V.V. Patel, V. Badheka, A. Kumar, Friction stir processing as a novel technique to achieve superplasticity in aluminum alloys: process variables, variants, and applications, Metallography, Microstructure, and Analysis 5 (2016) 278-293.
DOI: 10.1007/s13632-016-0285-x
Google Scholar
[18]
R.V. Vignesh, R. Padmanaban, M. Govindaraju, Investigations on the surface topography, corrosion behavior, and biocompatibility of friction stir processed magnesium alloy AZ91D, Surf. Topogr.: Metrol. Prop. 7 (2019) 025020.
DOI: 10.1088/2051-672x/ab269c
Google Scholar
[19]
B.M. Bharathi, R.V. Vignesh, R. Padmanaban, M. Govindaraju, Effect of friction stir processing and heat treatment on the corrosion properties of AZ31 alloy, Aust. J. Mech. Eng. 20 (2022) 1479-1488.
DOI: 10.1080/14484846.2020.1815999
Google Scholar
[20]
T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915.
DOI: 10.1016/j.biomaterials.2006.01.017
Google Scholar
[21]
G.R. Cui, Z.Y. Ma, S.X. Li, The origin of non-uniform microstructure and its effects on the mechanical properties of a friction stir processed Al–Mg alloy, Acta Materialia 57 (2009) 5718-5729.
DOI: 10.1016/j.actamat.2009.07.065
Google Scholar
[22]
M.V. Naik, N. Narasaiah, P. Chakravarthy, R.A. Kumar, Microstructure and mechanical properties of friction stir processed Zn-Mg biodegradable alloys, J. Alloys Compd. 970 (2024) 172160.
DOI: 10.1016/j.jallcom.2023.172160
Google Scholar
[23]
B.L. Mordike, T. Ebert, Magnesium: properties—applications—potential, Mater. Sci. Eng. A 302 (2001) 37-45.
Google Scholar
[24]
Z.Y. Ma, Friction stir processing technology: a review, Metall. Mater. Trans. A 39 (2008) 642-658.
DOI: 10.1007/s11661-007-9459-0
Google Scholar
[25]
E.T. Akinlabi, R.M. Mahamood, Solid-state Welding: Friction and Friction Stir Welding Processes, Springer International Publishing, New York, 2020.
DOI: 10.1007/978-3-030-37015-2_3
Google Scholar