Stress-Strain Characteristics of Laser Powder Bed Fusion of AlSi10Mg Alloy: An Atomistic Analysis

Article Preview

Abstract:

This study presents an atomistic analysis of the stress-strain characteristics in the laser powder bed fusion (LPBF) process for the AlSi10Mg alloy. The stress-strain response of printed components is investigated by introducing defects through molecular dynamics simulation. The simulation box dimensions for tensile tests and crack propagation are 152.416 Å, 201.228 Å, and 42.49 Å along the X, Y, and Z directions. Periodic boundary conditions are applied along all sides. A constant strain rate of 10⁹ s⁻¹ is applied along the Y-direction at a temperature of 300 K. The simulation results reveal that the maximum stress occurs at the initial time step, followed by a gradual decline as stress decreases and strain increases, indicating plastic deformation through dislocation slip. Dislocation Analysis (DXA) shows that dislocations increase with increasing strain. These findings enhance the understanding of the material's deformation behaviour and provide insights for optimizing its properties through laser processing parameters.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-10

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Grünberger, R. Domröse, Direct metal laser sintering, Laser Technik Journal, 12 (2015), 45-48.

DOI: 10.1002/latj.201500007

Google Scholar

[2] S. Sahoo, K. Chou, Phase field modeling of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process, Additive Manufacturing, 9 (2016), 14-24.

DOI: 10.1016/j.addma.2015.12.005

Google Scholar

[3] D. D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, International Materials Reviews, 57 (2012),133-164.

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[4] J. Nandy, H. Sarangi, S. Sahoo, A review on direct metal laser sintering: process features and microstructure modelling, Lasers in Manufacturing and Materials Processing, 6 (2019), 280-316.

DOI: 10.1007/s40516-019-00094-y

Google Scholar

[5] E. Brandl, U. Heckenberger, V.olzinger, D. Buchbinder, Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior, Materials & Design, 34 (2012), 159-169.

DOI: 10.1016/j.matdes.2011.07.067

Google Scholar

[6] J. Nandy, S. Sahoo, H. Sarangi, R. K. Sabat, Evaluation of structural and mechanical properties of high strength aluminum alloy components fabricated using laser powder bed fusion process, Journal of Laser Applications, 33 (2021), 032009.

DOI: 10.2351/7.0000169

Google Scholar

[7] B. K. Panda, S. Sahoo, C. S. Kumar, A. K. Nath, Multiscale modelling of microstructure evolution, and local solidification behaviours of the AlSi10Mg build component in laser powder bed fusion process, Optics & Laser Technology, 180 (2025), 111446.

DOI: 10.1016/j.optlastec.2024.111446

Google Scholar

[8] C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, Evaluation of lightweight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, Journal of Materials Processing Technology, 214 (2014), 856-864.

DOI: 10.1016/j.jmatprotec.2013.12.004

Google Scholar

[9] B. K. Panda, S. Sahoo, C. S. Kumar, A. K. Nath, Investigating the Microstructural and Mechanical Characteristics of Laser Additive‐Manufactured AlSi10Mg Specimens Through Experimental and Phase‐Field Modeling Approaches, Advanced Engineering Materials, 26 (2024), 2301784.

DOI: 10.1002/adem.202301784

Google Scholar

[10] J. Nandy, N. Yedla, P. Gupta, H. Sarangi, S. Sahoo, Sintering of AlSi10Mg particles in direct metal laser sintering process: A molecular dynamics simulation study, Materials Chemistry and Physics, 236 (2019), 121803.

DOI: 10.1016/j.matchemphys.2019.121803

Google Scholar

[11] J. Nandy, S. Sahoo, N. Yedla, H. Sarangi, Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles. Journal of Molecular Modeling, 26 (2020), 125.

DOI: 10.1007/s00894-020-04395-4

Google Scholar

[12] J. Krishan, P. Gupta, K. Vaduganathan, N. Yedla, Superplastic Pd50Pt50 monocrystalline bimetallic alloy nanowire: a molecular dynamics simulation study, Metallurgical Research and Technology, 114 (2017), 302.

DOI: 10.1051/metal/2016067

Google Scholar

[13] K. C. Katakam, P. Gupta, N. Yedla, Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis, Journal of Materials Engineering and Performance, 28 (2019),63–78.

DOI: 10.1007/s11665-018-3795-7

Google Scholar

[14] Z. Zhao, F. Chu, and Y. Wei, Atomistic scale behaviors of crack propagation in nanocrystalline bcc iron. Materials Science and Engineering: A, 809 (2021), 140948.

DOI: 10.1016/j.msea.2021.140948

Google Scholar

[15] M. Moradi, G.H. Farrahi, M. Chamani, Effect of microstructure on crack behavior in nanocrystalline nickel using molecular dynamics simulation. Theoretical and Applied fracture Mechanics, 104 (2019), 102390.

DOI: 10.1016/j.tafmec.2019.102390

Google Scholar

[16] S. Sahoo, Simulation study on rapid solidification of eutectic Al-Cu alloy: a molecular dynamics approach, Int. J. Computational Materials Science and Surface Engineering 7 (2017), 18-25.

DOI: 10.1504/ijcmsse.2017.10009574

Google Scholar

[17] A. E. Galashev, K. A. Ivanichkina, Computational study of the properties of silicon thin films on graphite. Russian Journal of Physical Chemistry A, 91(2017), 2448-2452.

DOI: 10.1134/s003602441712007x

Google Scholar

[18] L. V. Sanga, V. V. Hoang, N. T. T. Hang, Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. The European Physical Journal D. 67 (2013), 64-72.

DOI: 10.1140/epjd/e2013-30584-9

Google Scholar

[19] S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, 18 (2007), 43.

Google Scholar

[20] B.K. Panda, S. Sahoo, Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results in Physics. 12 (2019), 1372-1381.

DOI: 10.1016/j.rinp.2019.01.002

Google Scholar