[1]
T. Grünberger, R. Domröse, Direct metal laser sintering, Laser Technik Journal, 12 (2015), 45-48.
DOI: 10.1002/latj.201500007
Google Scholar
[2]
S. Sahoo, K. Chou, Phase field modeling of microstructure evolution of Ti-6Al-4V in electron beam additive manufacturing process, Additive Manufacturing, 9 (2016), 14-24.
DOI: 10.1016/j.addma.2015.12.005
Google Scholar
[3]
D. D. Gu, W. Meiners, K. Wissenbach, R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms, International Materials Reviews, 57 (2012),133-164.
DOI: 10.1179/1743280411y.0000000014
Google Scholar
[4]
J. Nandy, H. Sarangi, S. Sahoo, A review on direct metal laser sintering: process features and microstructure modelling, Lasers in Manufacturing and Materials Processing, 6 (2019), 280-316.
DOI: 10.1007/s40516-019-00094-y
Google Scholar
[5]
E. Brandl, U. Heckenberger, V.olzinger, D. Buchbinder, Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior, Materials & Design, 34 (2012), 159-169.
DOI: 10.1016/j.matdes.2011.07.067
Google Scholar
[6]
J. Nandy, S. Sahoo, H. Sarangi, R. K. Sabat, Evaluation of structural and mechanical properties of high strength aluminum alloy components fabricated using laser powder bed fusion process, Journal of Laser Applications, 33 (2021), 032009.
DOI: 10.2351/7.0000169
Google Scholar
[7]
B. K. Panda, S. Sahoo, C. S. Kumar, A. K. Nath, Multiscale modelling of microstructure evolution, and local solidification behaviours of the AlSi10Mg build component in laser powder bed fusion process, Optics & Laser Technology, 180 (2025), 111446.
DOI: 10.1016/j.optlastec.2024.111446
Google Scholar
[8]
C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, D. Raymont, Evaluation of lightweight AlSi10Mg periodic cellular lattice structures fabricated via direct metal laser sintering, Journal of Materials Processing Technology, 214 (2014), 856-864.
DOI: 10.1016/j.jmatprotec.2013.12.004
Google Scholar
[9]
B. K. Panda, S. Sahoo, C. S. Kumar, A. K. Nath, Investigating the Microstructural and Mechanical Characteristics of Laser Additive‐Manufactured AlSi10Mg Specimens Through Experimental and Phase‐Field Modeling Approaches, Advanced Engineering Materials, 26 (2024), 2301784.
DOI: 10.1002/adem.202301784
Google Scholar
[10]
J. Nandy, N. Yedla, P. Gupta, H. Sarangi, S. Sahoo, Sintering of AlSi10Mg particles in direct metal laser sintering process: A molecular dynamics simulation study, Materials Chemistry and Physics, 236 (2019), 121803.
DOI: 10.1016/j.matchemphys.2019.121803
Google Scholar
[11]
J. Nandy, S. Sahoo, N. Yedla, H. Sarangi, Molecular dynamics simulation of coalescence kinetics and neck growth in laser additive manufacturing of aluminum alloy nanoparticles. Journal of Molecular Modeling, 26 (2020), 125.
DOI: 10.1007/s00894-020-04395-4
Google Scholar
[12]
J. Krishan, P. Gupta, K. Vaduganathan, N. Yedla, Superplastic Pd50Pt50 monocrystalline bimetallic alloy nanowire: a molecular dynamics simulation study, Metallurgical Research and Technology, 114 (2017), 302.
DOI: 10.1051/metal/2016067
Google Scholar
[13]
K. C. Katakam, P. Gupta, N. Yedla, Large-Scale Molecular Dynamics Simulation Studies on Deformation of Ni Nanowires: Surface Profile, Defects and Stacking Fault Width Analysis, Journal of Materials Engineering and Performance, 28 (2019),63–78.
DOI: 10.1007/s11665-018-3795-7
Google Scholar
[14]
Z. Zhao, F. Chu, and Y. Wei, Atomistic scale behaviors of crack propagation in nanocrystalline bcc iron. Materials Science and Engineering: A, 809 (2021), 140948.
DOI: 10.1016/j.msea.2021.140948
Google Scholar
[15]
M. Moradi, G.H. Farrahi, M. Chamani, Effect of microstructure on crack behavior in nanocrystalline nickel using molecular dynamics simulation. Theoretical and Applied fracture Mechanics, 104 (2019), 102390.
DOI: 10.1016/j.tafmec.2019.102390
Google Scholar
[16]
S. Sahoo, Simulation study on rapid solidification of eutectic Al-Cu alloy: a molecular dynamics approach, Int. J. Computational Materials Science and Surface Engineering 7 (2017), 18-25.
DOI: 10.1504/ijcmsse.2017.10009574
Google Scholar
[17]
A. E. Galashev, K. A. Ivanichkina, Computational study of the properties of silicon thin films on graphite. Russian Journal of Physical Chemistry A, 91(2017), 2448-2452.
DOI: 10.1134/s003602441712007x
Google Scholar
[18]
L. V. Sanga, V. V. Hoang, N. T. T. Hang, Molecular dynamics simulation of melting of fcc Lennard-Jones nanoparticles. The European Physical Journal D. 67 (2013), 64-72.
DOI: 10.1140/epjd/e2013-30584-9
Google Scholar
[19]
S. Plimpton, P. Crozier, A. Thompson, LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia National Laboratories, 18 (2007), 43.
Google Scholar
[20]
B.K. Panda, S. Sahoo, Thermo-mechanical modeling and validation of stress field during laser powder bed fusion of AlSi10Mg built part. Results in Physics. 12 (2019), 1372-1381.
DOI: 10.1016/j.rinp.2019.01.002
Google Scholar