[1]
A.A. Firoozi, A.A. Firoozi, T. Saidani, Advancing durability in the energy sector: Novel high-temperature resistant coatings and their challenges, Ain Shams Eng. J. 16 (2025) 103431.
DOI: 10.1016/j.asej.2025.103431
Google Scholar
[2]
T.S. Sidhu, S. Prakash, R.D. Agrawal, Characterisations of HVOF sprayed NiCrBSi coatings on Ni- and Fe-based superalloys and evaluation of cyclic oxidation behaviour of some Ni-based superalloys in molten salt environment, Thin Solid Films 515 (2006) 95–105.
DOI: 10.1016/j.tsf.2005.12.041
Google Scholar
[3]
T.S. Sidhu, A. Malik, S. Prakash, R.D. Agrawal, Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys at 800 °C, J. Therm. Spray Technol. 16 (2007) 844–849.
DOI: 10.1007/s11666-007-9106-8
Google Scholar
[4]
N. Priyantha, P. Jayaweera, A. Sanjurjo, K. Lau, F. Lu, K. Krist, Corrosion-resistant metallic coatings for applications in highly aggressive environments, Surf. Coatings Technol. 163–164 (2003) 31–36.
DOI: 10.1016/S0257-8972(02)00590-X
Google Scholar
[5]
P. Senapati, H. Sutar, R. Murmu, S. Bajpai, Experimental design of solid particle wear behavior of ni-based composite coatings, J. Compos. Sci. 5 (2021) 1–19.
DOI: 10.3390/jcs5050133
Google Scholar
[6]
P. Senapati, H. Sutar, Surface erosion behaviour over NiCrBSi-Al 2 O 3 composite coatings, (n.d.).
Google Scholar
[7]
W.M. Zhao, Y. Wang, T. Han, K.Y. Wu, J. Xue, Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF, Surf. Coatings Technol. 183 (2004) 118–125.
DOI: 10.1016/j.surfcoat.2003.09.053
Google Scholar
[8]
V. Lakkannavar, K.B. Yogesha, C.D. Prasad, R.K. Phanden, S. G, S.C. Prasad, Thermal spray coatings on high-temperature oxidation and corrosion applications – A comprehensive review, Results in Surfaces and Interfaces 16 (2024) 100250.
DOI: 10.1016/j.rsurfi.2024.100250
Google Scholar
[9]
K. Anusha, B.C. Routara, S. Guha, A Review on High-Velocity Oxy-Fuel (HVOF) Coating Technique, J. Inst. Eng. Ser. D 104 (2023) 831–848.
DOI: 10.1007/s40033-022-00434-x
Google Scholar
[10]
D.G. Pradeep, C. V. Venkatesh, H.S. Nithin, Review on Tribological and Mechanical Behavior in HVOF Thermal-sprayed Composite Coatings, J. Bio- Tribo-Corrosion 8 (2022) 1–19.
DOI: 10.1007/s40735-022-00631-x
Google Scholar
[11]
M. Wu, L. Pan, H. Duan, C. Wan, T. Yang, M. Gao, S. Yu, Study on wear resistance and corrosion resistance of hvof surface coating refabricate for hydraulic support column, Coatings 11 (2021).
DOI: 10.3390/coatings11121457
Google Scholar
[12]
A. Kumar, M. Kumar, S. Tailor, Tribological behaviour of HVOF-sprayed Ni-based self-lubricating composite coatings, Trans. Inst. Met. Finish. 101 (2023) 320–328.
DOI: 10.1080/00202967.2023.2185974
Google Scholar
[13]
M.A. Javed, A.S.M. Ang, C.M. Bhadra, R. Piola, W.C. Neil, C.C. Berndt, M. Leigh, H. Howse, S.A. Wade, Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications, Surf. Coatings Technol. 418 (2021) 127239.
DOI: 10.1016/j.surfcoat.2021.127239
Google Scholar
[14]
S. Sahoo, P. Senapati, S. Mantry, H. Sutar, Characterization of Ni-Based Composite Coating HVOF Process, Lect. Notes Mech. Eng. (2024) 475–483.
DOI: 10.1007/978-981-97-1080-5_38
Google Scholar
[15]
A. Kumar, M. Kumar, S. Tailor, Self-lubricating composite coatings: A review of deposition techniques and material advancement, Mater. Today Proc. (2023).
DOI: 10.1016/j.matpr.2023.01.035
Google Scholar
[16]
S.A. Galedari, A. Mahdavi, F. Azarmi, Y. Huang, A. McDonald, A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures, 2019.
DOI: 10.1007/s11666-019-00855-3
Google Scholar
[17]
W.M. Zhao, Y. Wang, L.X. Dong, K.Y. Wu, J. Xue, Corrosion mechanism of NiCrBSi coatings deposited by HVOF, Surf. Coatings Technol. 190 (2005) 293–298.
DOI: 10.1016/j.surfcoat.2004.04.057
Google Scholar
[18]
R. Rachidi, B. El Kihel, F. Delaunois, Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying, Mater. Sci. Eng. B 241 (2019) 13–21.
DOI: 10.1016/j.mseb.2019.02.002
Google Scholar
[19]
R. González, M.A. García, I. Peñuelas, M. Cadenas, M. del R. Fernández, A.H. Battez, D. Felgueroso, Microstructural study of NiCrBSi coatings obtained by different processes, Wear 263 (2007) 619–624.
DOI: 10.1016/j.wear.2007.01.094
Google Scholar
[20]
J.M. Miguel, J.M. Guilemany, S. Vizcaino, Tribological study of NiCrBSi coating obtained by different processes, Tribol. Int. 36 (2003) 181–187.
DOI: 10.1016/S0301-679X(02)00144-5
Google Scholar
[21]
H. Wang, W. Xia, Y. Jin, A study on abrasive resistance of Ni-based coatings with a WC hard phase, Wear 195 (1996) 47–52.
DOI: 10.1016/0043-1648(95)06762-0
Google Scholar
[22]
J. Wang, L. Wang, H. Lu, J. Du, X. Qi, L. Lu, Y. Zhao, Z. Liu, W. Meng, Enhanced Erosion Resistance of Cr3C2-TiC-NiCrCoMo Coatings: Experimental and Numerical Investigation of Erosion Mechanisms, Coatings 15 (2025).
DOI: 10.3390/coatings15030294
Google Scholar
[23]
S. Medabalimi, A.M. Hebbale, S. Gudala, U. Rokkala, M.R. Ramesh, Studies on high temperature erosion behavior of HVOF-sprayed (Cr₃C₂-NiCr)Si and WC-Co/NiCrAlY composite coatings, Int. J. Refract. Met. Hard Mater. 127 (2025).
DOI: 10.1016/j.ijrmhm.2024.106970
Google Scholar
[24]
L.Y. Chen, T. Xu, S. Lu, Z.X. Wang, S. Chen, L.C. Zhang, Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment, Surf. Coatings Technol. 350 (2018) 436–444.
DOI: 10.1016/j.surfcoat.2018.07.037
Google Scholar
[25]
L.Y. Chen, H. Wang, C. Zhao, S. Lu, Z.X. Wang, J. Sha, S. Chen, L.C. Zhang, Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating, Surf. Coatings Technol. 369 (2019) 31–43.
DOI: 10.1016/j.surfcoat.2019.04.052
Google Scholar
[26]
J. Vicenzi, D.L. Villanova, M.D. Lima, A.S. Takimi, C.M. Marques, C.P. Bergmann, HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant, Mater. Des. 27 (2006) 236–242.
DOI: 10.1016/j.matdes.2004.10.008
Google Scholar
[27]
J.C. Miranda, A. Ramalho, Abrasion resistance of thermal sprayed composite coatings with a nickel alloy matrix and a WC hard phase. Effect of deposition technique and re-melting, Tribol. Lett. 11 (2001) 37–48.
DOI: 10.1023/A:1016692304440
Google Scholar
[28]
Z.Q. Zhang, H.D. Wang, B.S. Xu, G.S. Zhang, Characterization of microstructure and rolling contact fatigue performance of NiCrBSi/WC-Ni composite coatings prepared by plasma spraying, Surf. Coatings Technol. 261 (2015) 60–68.
DOI: 10.1016/j.surfcoat.2014.11.061
Google Scholar
[29]
J.R. Nicholls, Designing Oxidation-Resistant Coatings, Jom (2000).
Google Scholar
[30]
Z. Bergant, J. Grum, Quality improvement of flame sprayed, heat treated, and Remelted NiCrBSi coatings, J. Therm. Spray Technol. 18 (2009) 380–391.
DOI: 10.1007/s11666-009-9304-7
Google Scholar
[31]
M. Zhang, Y.N. Li, F.C. Zhang, X.B. Wang, L.Y. Chen, Z.N. Yang, Effect of annealing treatment on the microstructure and mechanical properties of a duplex Zr-2.5Nb alloy, Mater. Sci. Eng. A 706 (2017) 236–241.
DOI: 10.1016/j.msea.2017.08.107
Google Scholar
[32]
A. Vencl, S. Arostegui, G. Favaro, F. Zivic, M. Mrdak, S. Mitrović, V. Popovic, Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections, Tribol. Int. 44 (2011) 1281–1288.
DOI: 10.1016/j.triboint.2011.04.002
Google Scholar
[33]
B.M. Dhakar, D.K. Dwivedi, S.P. Sharma, Studies on remelting of tungsten carbide and rare earth modified nickel base alloy composite coating, Surf. Eng. 28 (2012) 73–80.
DOI: 10.1179/1743294411Y.0000000051
Google Scholar
[34]
C. Thiruvikraman, V. Balasubramanian, K. Sridhar, Optimizing HVOF spray parameters to maximize bonding strength of WC-CrC-Ni coatings on AISI 304L stainless steel, J. Therm. Spray Technol. 23 (2014) 860–875.
DOI: 10.1007/s11666-014-0091-4
Google Scholar
[35]
P. Sang, L.Y. Chen, C. Zhao, Z.X. Wang, H. Wang, S. Lu, D. Song, J.H. Xu, L.C. Zhang, Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed nicrbsi coatings, Metals (Basel). 9 (2019).
DOI: 10.3390/met9121342
Google Scholar
[36]
C.J. Li, Y.Y. Wang, Effect of particle state on the adhesive strength of HVOF sprayed metallic coating, J. Therm. Spray Technol. 11 (2002) 523–529.
DOI: 10.1361/105996302770348655
Google Scholar
[37]
H. Zhou, C. Zhang, W. Wang, M. Yasir, L. Liu, Microstructure and mechanical properties of fe-based amorphous composite coatings reinforced by stainless steel powders, J. Mater. Sci. Technol. 31 (2015) 43–47.
DOI: 10.1016/j.jmst.2014.09.008
Google Scholar