Physical and Mechanical Characterization of HVOF-Deposited NiCrBSi Composite Coating

Article Preview

Abstract:

Nickel-based coatings are a vital technology in industrial applications, offering protection to metallic objects against high temperatures, wear, corrosion, and erosion. The current research work examines the deposition of NiCrBSi powder in Stainless steel (AISI SS 304) using the high-velocity oxy-fuel (HVOF) thermal spray coating technique. The effects of HVOF-deposited NiCrBSi coatings on the microstructure, morphology, and mechanical and physical properties of the coated stainless steel. Microstructural and morphological analyses were performed using scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD) to characterize the coating. The coatings were systematically assessed for surface roughness, deposition efficiency, coating thickness, and porosity. Adhesion strength was measured using a pull-off adhesion tester to ensure robust bonding. The results demonstrate that HVOF-sprayed NiCrBSi coatings possess low porosity (2-3%), strong adhesion (45–55 MPa), and increased hardness, making them highly suitable for high-temperature, anti-wear applications, with improved durability and performance under harsh operating conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-26

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.A. Firoozi, A.A. Firoozi, T. Saidani, Advancing durability in the energy sector: Novel high-temperature resistant coatings and their challenges, Ain Shams Eng. J. 16 (2025) 103431.

DOI: 10.1016/j.asej.2025.103431

Google Scholar

[2] T.S. Sidhu, S. Prakash, R.D. Agrawal, Characterisations of HVOF sprayed NiCrBSi coatings on Ni- and Fe-based superalloys and evaluation of cyclic oxidation behaviour of some Ni-based superalloys in molten salt environment, Thin Solid Films 515 (2006) 95–105.

DOI: 10.1016/j.tsf.2005.12.041

Google Scholar

[3] T.S. Sidhu, A. Malik, S. Prakash, R.D. Agrawal, Oxidation and hot corrosion resistance of HVOF WC-NiCrFeSiB coating on Ni- and Fe-based superalloys at 800 °C, J. Therm. Spray Technol. 16 (2007) 844–849.

DOI: 10.1007/s11666-007-9106-8

Google Scholar

[4] N. Priyantha, P. Jayaweera, A. Sanjurjo, K. Lau, F. Lu, K. Krist, Corrosion-resistant metallic coatings for applications in highly aggressive environments, Surf. Coatings Technol. 163–164 (2003) 31–36.

DOI: 10.1016/S0257-8972(02)00590-X

Google Scholar

[5] P. Senapati, H. Sutar, R. Murmu, S. Bajpai, Experimental design of solid particle wear behavior of ni-based composite coatings, J. Compos. Sci. 5 (2021) 1–19.

DOI: 10.3390/jcs5050133

Google Scholar

[6] P. Senapati, H. Sutar, Surface erosion behaviour over NiCrBSi-Al 2 O 3 composite coatings, (n.d.).

Google Scholar

[7] W.M. Zhao, Y. Wang, T. Han, K.Y. Wu, J. Xue, Electrochemical evaluation of corrosion resistance of NiCrBSi coatings deposited by HVOF, Surf. Coatings Technol. 183 (2004) 118–125.

DOI: 10.1016/j.surfcoat.2003.09.053

Google Scholar

[8] V. Lakkannavar, K.B. Yogesha, C.D. Prasad, R.K. Phanden, S. G, S.C. Prasad, Thermal spray coatings on high-temperature oxidation and corrosion applications – A comprehensive review, Results in Surfaces and Interfaces 16 (2024) 100250.

DOI: 10.1016/j.rsurfi.2024.100250

Google Scholar

[9] K. Anusha, B.C. Routara, S. Guha, A Review on High-Velocity Oxy-Fuel (HVOF) Coating Technique, J. Inst. Eng. Ser. D 104 (2023) 831–848.

DOI: 10.1007/s40033-022-00434-x

Google Scholar

[10] D.G. Pradeep, C. V. Venkatesh, H.S. Nithin, Review on Tribological and Mechanical Behavior in HVOF Thermal-sprayed Composite Coatings, J. Bio- Tribo-Corrosion 8 (2022) 1–19.

DOI: 10.1007/s40735-022-00631-x

Google Scholar

[11] M. Wu, L. Pan, H. Duan, C. Wan, T. Yang, M. Gao, S. Yu, Study on wear resistance and corrosion resistance of hvof surface coating refabricate for hydraulic support column, Coatings 11 (2021).

DOI: 10.3390/coatings11121457

Google Scholar

[12] A. Kumar, M. Kumar, S. Tailor, Tribological behaviour of HVOF-sprayed Ni-based self-lubricating composite coatings, Trans. Inst. Met. Finish. 101 (2023) 320–328.

DOI: 10.1080/00202967.2023.2185974

Google Scholar

[13] M.A. Javed, A.S.M. Ang, C.M. Bhadra, R. Piola, W.C. Neil, C.C. Berndt, M. Leigh, H. Howse, S.A. Wade, Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications, Surf. Coatings Technol. 418 (2021) 127239.

DOI: 10.1016/j.surfcoat.2021.127239

Google Scholar

[14] S. Sahoo, P. Senapati, S. Mantry, H. Sutar, Characterization of Ni-Based Composite Coating HVOF Process, Lect. Notes Mech. Eng. (2024) 475–483.

DOI: 10.1007/978-981-97-1080-5_38

Google Scholar

[15] A. Kumar, M. Kumar, S. Tailor, Self-lubricating composite coatings: A review of deposition techniques and material advancement, Mater. Today Proc. (2023).

DOI: 10.1016/j.matpr.2023.01.035

Google Scholar

[16] S.A. Galedari, A. Mahdavi, F. Azarmi, Y. Huang, A. McDonald, A Comprehensive Review of Corrosion Resistance of Thermally-Sprayed and Thermally-Diffused Protective Coatings on Steel Structures, 2019.

DOI: 10.1007/s11666-019-00855-3

Google Scholar

[17] W.M. Zhao, Y. Wang, L.X. Dong, K.Y. Wu, J. Xue, Corrosion mechanism of NiCrBSi coatings deposited by HVOF, Surf. Coatings Technol. 190 (2005) 293–298.

DOI: 10.1016/j.surfcoat.2004.04.057

Google Scholar

[18] R. Rachidi, B. El Kihel, F. Delaunois, Microstructure and mechanical characterization of NiCrBSi alloy and NiCrBSi-WC composite coatings produced by flame spraying, Mater. Sci. Eng. B 241 (2019) 13–21.

DOI: 10.1016/j.mseb.2019.02.002

Google Scholar

[19] R. González, M.A. García, I. Peñuelas, M. Cadenas, M. del R. Fernández, A.H. Battez, D. Felgueroso, Microstructural study of NiCrBSi coatings obtained by different processes, Wear 263 (2007) 619–624.

DOI: 10.1016/j.wear.2007.01.094

Google Scholar

[20] J.M. Miguel, J.M. Guilemany, S. Vizcaino, Tribological study of NiCrBSi coating obtained by different processes, Tribol. Int. 36 (2003) 181–187.

DOI: 10.1016/S0301-679X(02)00144-5

Google Scholar

[21] H. Wang, W. Xia, Y. Jin, A study on abrasive resistance of Ni-based coatings with a WC hard phase, Wear 195 (1996) 47–52.

DOI: 10.1016/0043-1648(95)06762-0

Google Scholar

[22] J. Wang, L. Wang, H. Lu, J. Du, X. Qi, L. Lu, Y. Zhao, Z. Liu, W. Meng, Enhanced Erosion Resistance of Cr3C2-TiC-NiCrCoMo Coatings: Experimental and Numerical Investigation of Erosion Mechanisms, Coatings 15 (2025).

DOI: 10.3390/coatings15030294

Google Scholar

[23] S. Medabalimi, A.M. Hebbale, S. Gudala, U. Rokkala, M.R. Ramesh, Studies on high temperature erosion behavior of HVOF-sprayed (Cr₃C₂-NiCr)Si and WC-Co/NiCrAlY composite coatings, Int. J. Refract. Met. Hard Mater. 127 (2025).

DOI: 10.1016/j.ijrmhm.2024.106970

Google Scholar

[24] L.Y. Chen, T. Xu, S. Lu, Z.X. Wang, S. Chen, L.C. Zhang, Improved hardness and wear resistance of plasma sprayed nanostructured NiCrBSi coating via short-time heat treatment, Surf. Coatings Technol. 350 (2018) 436–444.

DOI: 10.1016/j.surfcoat.2018.07.037

Google Scholar

[25] L.Y. Chen, H. Wang, C. Zhao, S. Lu, Z.X. Wang, J. Sha, S. Chen, L.C. Zhang, Automatic remelting and enhanced mechanical performance of a plasma sprayed NiCrBSi coating, Surf. Coatings Technol. 369 (2019) 31–43.

DOI: 10.1016/j.surfcoat.2019.04.052

Google Scholar

[26] J. Vicenzi, D.L. Villanova, M.D. Lima, A.S. Takimi, C.M. Marques, C.P. Bergmann, HVOF-coatings against high temperature erosion (∼300 °C) by coal fly ash in thermoelectric power plant, Mater. Des. 27 (2006) 236–242.

DOI: 10.1016/j.matdes.2004.10.008

Google Scholar

[27] J.C. Miranda, A. Ramalho, Abrasion resistance of thermal sprayed composite coatings with a nickel alloy matrix and a WC hard phase. Effect of deposition technique and re-melting, Tribol. Lett. 11 (2001) 37–48.

DOI: 10.1023/A:1016692304440

Google Scholar

[28] Z.Q. Zhang, H.D. Wang, B.S. Xu, G.S. Zhang, Characterization of microstructure and rolling contact fatigue performance of NiCrBSi/WC-Ni composite coatings prepared by plasma spraying, Surf. Coatings Technol. 261 (2015) 60–68.

DOI: 10.1016/j.surfcoat.2014.11.061

Google Scholar

[29] J.R. Nicholls, Designing Oxidation-Resistant Coatings, Jom (2000).

Google Scholar

[30] Z. Bergant, J. Grum, Quality improvement of flame sprayed, heat treated, and Remelted NiCrBSi coatings, J. Therm. Spray Technol. 18 (2009) 380–391.

DOI: 10.1007/s11666-009-9304-7

Google Scholar

[31] M. Zhang, Y.N. Li, F.C. Zhang, X.B. Wang, L.Y. Chen, Z.N. Yang, Effect of annealing treatment on the microstructure and mechanical properties of a duplex Zr-2.5Nb alloy, Mater. Sci. Eng. A 706 (2017) 236–241.

DOI: 10.1016/j.msea.2017.08.107

Google Scholar

[32] A. Vencl, S. Arostegui, G. Favaro, F. Zivic, M. Mrdak, S. Mitrović, V. Popovic, Evaluation of adhesion/cohesion bond strength of the thick plasma spray coatings by scratch testing on coatings cross-sections, Tribol. Int. 44 (2011) 1281–1288.

DOI: 10.1016/j.triboint.2011.04.002

Google Scholar

[33] B.M. Dhakar, D.K. Dwivedi, S.P. Sharma, Studies on remelting of tungsten carbide and rare earth modified nickel base alloy composite coating, Surf. Eng. 28 (2012) 73–80.

DOI: 10.1179/1743294411Y.0000000051

Google Scholar

[34] C. Thiruvikraman, V. Balasubramanian, K. Sridhar, Optimizing HVOF spray parameters to maximize bonding strength of WC-CrC-Ni coatings on AISI 304L stainless steel, J. Therm. Spray Technol. 23 (2014) 860–875.

DOI: 10.1007/s11666-014-0091-4

Google Scholar

[35] P. Sang, L.Y. Chen, C. Zhao, Z.X. Wang, H. Wang, S. Lu, D. Song, J.H. Xu, L.C. Zhang, Particle size-dependent microstructure, hardness and electrochemical corrosion behavior of atmospheric plasma sprayed nicrbsi coatings, Metals (Basel). 9 (2019).

DOI: 10.3390/met9121342

Google Scholar

[36] C.J. Li, Y.Y. Wang, Effect of particle state on the adhesive strength of HVOF sprayed metallic coating, J. Therm. Spray Technol. 11 (2002) 523–529.

DOI: 10.1361/105996302770348655

Google Scholar

[37] H. Zhou, C. Zhang, W. Wang, M. Yasir, L. Liu, Microstructure and mechanical properties of fe-based amorphous composite coatings reinforced by stainless steel powders, J. Mater. Sci. Technol. 31 (2015) 43–47.

DOI: 10.1016/j.jmst.2014.09.008

Google Scholar