Effect of Mechanical Alloying on Structure and Hardness of FeCoNiCu Medium-Entropy Alloy

Article Preview

Abstract:

A FeCoNiCu high-entropy alloy was synthesized via mechanical alloying using elemental powders. The structural evolution during milling and the effects of subsequent sintering were investigated. X-ray diffraction confirmed the formation of a single-phase FCC solid solution with nanocrystalline structure. SEM and EDS analyses showed homogeneous element distribution without segregation. Microhardness testing revealed an average value of 105.47 HV1, indicating sufficient mechanical performance. The results demonstrate the potential of FeCoNiCu HEAs for structural applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-64

Citation:

Online since:

December 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. Cantor, I.T. Chang, P. Knight, A.J. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218.

DOI: 10.1016/j.msea.2003.10.257

Google Scholar

[2] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (5) (2004) 299–303.

DOI: 10.1002/adem.200300567

Google Scholar

[3] M.R. Toroghinejad, H. Pirmoradian, A. Shabani, Synthesis of FeCrCoNiCu high entropy alloy through mechanical alloying and spark plasma sintering processes, Mater. Chem. Phys. 278 (2022) 126433.

DOI: 10.1016/j.matchemphys.2022.126433

Google Scholar

[4] X. Jiang, X.K. Zeng, W. Xie, M. Liu, Y.X. Leng, Optimizing substrate bias voltage to improve mechanical and tribological properties of ductile FeCoNiCu high entropy alloy coatings with FCC structure, J. Alloy Compd. 1004 (2024) 175972.

DOI: 10.1016/j.jallcom.2024.175972

Google Scholar

[5] M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (3) (2014) 107–123.

DOI: 10.1080/21663831.2014.912690

Google Scholar

[6] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.

DOI: 10.1016/j.pmatsci.2013.10.001

Google Scholar

[7] E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev. 61 (3) (2016) 183–202.

DOI: 10.1080/09506608.2016.1180020

Google Scholar

[8] D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.

DOI: 10.1016/j.actamat.2016.08.081

Google Scholar

[9] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (15) (2013) 5743–5755.

DOI: 10.1016/j.actamat.2013.06.018

Google Scholar

[10] N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6 (2016) 35863.

DOI: 10.1038/srep35863

Google Scholar

[11] C. Jin, X. Li, J. Kang, H. Wang, Achieving excellent strength-ductility balance in the lightweight refractory high-entropy alloy by incorporating aluminum, Mater. Sci. Eng. A 915 (2024) 147248.

DOI: 10.1016/j.msea.2024.147248

Google Scholar

[12] H. Zhang, H. Meng, F. Meng, Y. Tong, P.K. Liaw, X. Yang, L. Zhao, H. Wang, Y. Gao, S. Chen, Magnificent tensile strength and ductility synergy in a NiCoCrAlTi high-entropy alloy at elevated temperature, J. Mater. Res. Technol. (2023).

DOI: 10.1016/j.jmrt.2023.12.038

Google Scholar

[13] H.T. Jeong, Y. Xing, H.K. Park, T.W. Na, S.H. Oh, W.J. Kim, Achieving high strength and uniform ductility in high-entropy alloys via dynamic-precipitation accelerated transformation-induced plasticity, Acta Mater. 258 (2024) 119945.

DOI: 10.1016/j.actamat.2024.119945

Google Scholar

[14] H. Li, R. Yuan, H. Liang, W. Yi Wang, J. Li, J. Wang, Towards high entropy alloy with enhanced strength and ductility using domain knowledge constrained active learning, Mater. Des. 222 (2022) 111186.

DOI: 10.1016/j.matdes.2022.111186

Google Scholar

[15] S.K. Singh, B.K. Mahanta, P. Rawat, S. Kumar, Machine learning-assisted design of high-entropy alloys for optimal strength and ductility, J. Alloy Compd. 946 (2024) 176282.

DOI: 10.1016/j.jallcom.2024.176282

Google Scholar

[16] B.E. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, E.J. Lavernia, Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy, Acta Mater. 181 (2019) 25–35.

DOI: 10.1016/j.actamat.2019.09.030

Google Scholar

[17] Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao, C. Ma, Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy, Mater. Sci. Eng. A 835 (2022) 142670.

DOI: 10.1016/j.msea.2022.142670

Google Scholar

[18] X. Zhu, J. Cai, C. Zhang, K. Cheng, J. Lu, M. Yang, S. Guo, C. Cai, Y. Shi, Macro-micro structure controlled hierarchical porous copper catalysts via laser powder bed fusion and chemical dealloying of a FeCoNiCu high-entropy alloy, J. Alloy Compd. 948 (2025) 180412.

DOI: 10.1016/j.jallcom.2025.180412

Google Scholar

[19] L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A 548 (2012) 64–68.

DOI: 10.1016/j.msea.2012.03.080

Google Scholar

[20] H. Qiu, H.G. Zhu, J. Zhang, Z.H. Xie, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys, Mater. Sci. Eng. A 769 (2020) 138514.

DOI: 10.1016/j.msea.2019.138514

Google Scholar

[21] M. Vaidya, G.M. Muralikrishna, B.S. Murty, High-entropy alloys by mechanical alloying: A review, J. Mater. Res. 34 (2019) 664–686.

DOI: 10.1557/jmr.2019.37

Google Scholar

[22] J. Feng, Y. Tang, J. Liu, P. Zhang, C. Liu and L. Wang, "Bio-high entropy alloys: Progress, challenges, and opportunities", Frontiers Bioeng. Biotechnol., (2022).

DOI: 10.3389/fbioe.2022.977282

Google Scholar

[23] J.M. Torralba, P. Alvaredo, A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review, Powder Metall. 62 (2) (2019) 84–114.

DOI: 10.1080/00325899.2019.1584454

Google Scholar

[24] C. Suryanarayana, Mechanical alloying: a novel technique to synthesize advanced materials, Research (2019) 4219812.

DOI: 10.34133/2019/4219812

Google Scholar

[25] C. Suryanarayana, "Mechanical alloying and milling," Prog. Mater. Sci., vol. 46, no. 1-2, p.1–184, 2001.

DOI: 10.1016/S0079-6425(99)00010-9

Google Scholar

[26] M. Vaidya, G.M. Muralikrishna, B.S. Murty, High-entropy alloys by mechanical alloying: A review, J. Mater. Res. 34 (5) (2019) 664–686.

DOI: 10.1557/jmr.2019.37

Google Scholar

[27] B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Pearson Education Limited, Harlow, 2014, 654 p.

Google Scholar

[28] M.R. Rahul, G. Phanikumar, Growth kinetics, microhardness and microstructure evolution of undercooled FeCoNiCuSn high entropy alloy, Mater. Sci. Eng. A 777 (2020) 139022.

DOI: 10.1016/j.msea.2020.139022

Google Scholar

[29] Y. Zou, Z. Qiu, C. Huang, D. Zeng, R. Lupoi, N. Zhang, S. Yin, Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray, Surf. Coat. Technol. 434 (2022) 128205.

DOI: 10.1016/j.surfcoat.2022.128205

Google Scholar

[30] Y. Zhuang, W. Liu, P. Xing, F. Wang, J. He, Effect of Co element on microstructure and mechanical properties of FeCoxNiCuAl alloys, Acta Metall. Sin. (Engl. Lett.) 25 (2) (2012).

Google Scholar

[31] X. Zhang, Z. Liu, D. Sun, S. Li, R. Zheng, W. Xiao, C. Ma, Microstructures, hardness and corrosion behaviors of FeCoNiNb0.5Mo0.5 and FeCoNiNb high-entropy alloys, Materials 11 (1) (2017) 16.

DOI: 10.3390/ma11010016

Google Scholar