[1]
B. Cantor, I.T. Chang, P. Knight, A.J. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A 375–377 (2004) 213–218.
DOI: 10.1016/j.msea.2003.10.257
Google Scholar
[2]
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes, Adv. Eng. Mater. 6 (5) (2004) 299–303.
DOI: 10.1002/adem.200300567
Google Scholar
[3]
M.R. Toroghinejad, H. Pirmoradian, A. Shabani, Synthesis of FeCrCoNiCu high entropy alloy through mechanical alloying and spark plasma sintering processes, Mater. Chem. Phys. 278 (2022) 126433.
DOI: 10.1016/j.matchemphys.2022.126433
Google Scholar
[4]
X. Jiang, X.K. Zeng, W. Xie, M. Liu, Y.X. Leng, Optimizing substrate bias voltage to improve mechanical and tribological properties of ductile FeCoNiCu high entropy alloy coatings with FCC structure, J. Alloy Compd. 1004 (2024) 175972.
DOI: 10.1016/j.jallcom.2024.175972
Google Scholar
[5]
M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Mater. Res. Lett. 2 (3) (2014) 107–123.
DOI: 10.1080/21663831.2014.912690
Google Scholar
[6]
Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci. 61 (2014) 1–93.
DOI: 10.1016/j.pmatsci.2013.10.001
Google Scholar
[7]
E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, Int. Mater. Rev. 61 (3) (2016) 183–202.
DOI: 10.1080/09506608.2016.1180020
Google Scholar
[8]
D.B. Miracle, O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater. 122 (2017) 448–511.
DOI: 10.1016/j.actamat.2016.08.081
Google Scholar
[9]
F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater. 61 (15) (2013) 5743–5755.
DOI: 10.1016/j.actamat.2013.06.018
Google Scholar
[10]
N.L. Okamoto, S. Fujimoto, Y. Kambara, M. Kawamura, Z.M. Chen, H. Matsunoshita, K. Tanaka, H. Inui, E.P. George, Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy, Sci. Rep. 6 (2016) 35863.
DOI: 10.1038/srep35863
Google Scholar
[11]
C. Jin, X. Li, J. Kang, H. Wang, Achieving excellent strength-ductility balance in the lightweight refractory high-entropy alloy by incorporating aluminum, Mater. Sci. Eng. A 915 (2024) 147248.
DOI: 10.1016/j.msea.2024.147248
Google Scholar
[12]
H. Zhang, H. Meng, F. Meng, Y. Tong, P.K. Liaw, X. Yang, L. Zhao, H. Wang, Y. Gao, S. Chen, Magnificent tensile strength and ductility synergy in a NiCoCrAlTi high-entropy alloy at elevated temperature, J. Mater. Res. Technol. (2023).
DOI: 10.1016/j.jmrt.2023.12.038
Google Scholar
[13]
H.T. Jeong, Y. Xing, H.K. Park, T.W. Na, S.H. Oh, W.J. Kim, Achieving high strength and uniform ductility in high-entropy alloys via dynamic-precipitation accelerated transformation-induced plasticity, Acta Mater. 258 (2024) 119945.
DOI: 10.1016/j.actamat.2024.119945
Google Scholar
[14]
H. Li, R. Yuan, H. Liang, W. Yi Wang, J. Li, J. Wang, Towards high entropy alloy with enhanced strength and ductility using domain knowledge constrained active learning, Mater. Des. 222 (2022) 111186.
DOI: 10.1016/j.matdes.2022.111186
Google Scholar
[15]
S.K. Singh, B.K. Mahanta, P. Rawat, S. Kumar, Machine learning-assisted design of high-entropy alloys for optimal strength and ductility, J. Alloy Compd. 946 (2024) 176282.
DOI: 10.1016/j.jallcom.2024.176282
Google Scholar
[16]
B.E. MacDonald, Z. Fu, X. Wang, Z. Li, W. Chen, Y. Zhou, D. Raabe, J. Schoenung, H. Hahn, E.J. Lavernia, Influence of phase decomposition on mechanical behavior of an equiatomic CoCuFeMnNi high entropy alloy, Acta Mater. 181 (2019) 25–35.
DOI: 10.1016/j.actamat.2019.09.030
Google Scholar
[17]
Y. Zhang, M. Liu, J. Sun, G. Li, R. Zheng, W. Xiao, C. Ma, Excellent thermal stability and mechanical properties of bulk nanostructured FeCoNiCu high entropy alloy, Mater. Sci. Eng. A 835 (2022) 142670.
DOI: 10.1016/j.msea.2022.142670
Google Scholar
[18]
X. Zhu, J. Cai, C. Zhang, K. Cheng, J. Lu, M. Yang, S. Guo, C. Cai, Y. Shi, Macro-micro structure controlled hierarchical porous copper catalysts via laser powder bed fusion and chemical dealloying of a FeCoNiCu high-entropy alloy, J. Alloy Compd. 948 (2025) 180412.
DOI: 10.1016/j.jallcom.2025.180412
Google Scholar
[19]
L. Liu, J.B. Zhu, C. Zhang, J.C. Li, Q. Jiang, Microstructure and the properties of FeCoCuNiSnx high entropy alloys, Mater. Sci. Eng. A 548 (2012) 64–68.
DOI: 10.1016/j.msea.2012.03.080
Google Scholar
[20]
H. Qiu, H.G. Zhu, J. Zhang, Z.H. Xie, Effect of Fe content upon the microstructures and mechanical properties of FexCoNiCu high entropy alloys, Mater. Sci. Eng. A 769 (2020) 138514.
DOI: 10.1016/j.msea.2019.138514
Google Scholar
[21]
M. Vaidya, G.M. Muralikrishna, B.S. Murty, High-entropy alloys by mechanical alloying: A review, J. Mater. Res. 34 (2019) 664–686.
DOI: 10.1557/jmr.2019.37
Google Scholar
[22]
J. Feng, Y. Tang, J. Liu, P. Zhang, C. Liu and L. Wang, "Bio-high entropy alloys: Progress, challenges, and opportunities", Frontiers Bioeng. Biotechnol., (2022).
DOI: 10.3389/fbioe.2022.977282
Google Scholar
[23]
J.M. Torralba, P. Alvaredo, A. García-Junceda, High-entropy alloys fabricated via powder metallurgy. A critical review, Powder Metall. 62 (2) (2019) 84–114.
DOI: 10.1080/00325899.2019.1584454
Google Scholar
[24]
C. Suryanarayana, Mechanical alloying: a novel technique to synthesize advanced materials, Research (2019) 4219812.
DOI: 10.34133/2019/4219812
Google Scholar
[25]
C. Suryanarayana, "Mechanical alloying and milling," Prog. Mater. Sci., vol. 46, no. 1-2, p.1–184, 2001.
DOI: 10.1016/S0079-6425(99)00010-9
Google Scholar
[26]
M. Vaidya, G.M. Muralikrishna, B.S. Murty, High-entropy alloys by mechanical alloying: A review, J. Mater. Res. 34 (5) (2019) 664–686.
DOI: 10.1557/jmr.2019.37
Google Scholar
[27]
B.D. Cullity, S.R. Stock, Elements of X-Ray Diffraction, 3rd ed., Pearson Education Limited, Harlow, 2014, 654 p.
Google Scholar
[28]
M.R. Rahul, G. Phanikumar, Growth kinetics, microhardness and microstructure evolution of undercooled FeCoNiCuSn high entropy alloy, Mater. Sci. Eng. A 777 (2020) 139022.
DOI: 10.1016/j.msea.2020.139022
Google Scholar
[29]
Y. Zou, Z. Qiu, C. Huang, D. Zeng, R. Lupoi, N. Zhang, S. Yin, Microstructure and tribological properties of Al2O3 reinforced FeCoNiCrMn high entropy alloy composite coatings by cold spray, Surf. Coat. Technol. 434 (2022) 128205.
DOI: 10.1016/j.surfcoat.2022.128205
Google Scholar
[30]
Y. Zhuang, W. Liu, P. Xing, F. Wang, J. He, Effect of Co element on microstructure and mechanical properties of FeCoxNiCuAl alloys, Acta Metall. Sin. (Engl. Lett.) 25 (2) (2012).
Google Scholar
[31]
X. Zhang, Z. Liu, D. Sun, S. Li, R. Zheng, W. Xiao, C. Ma, Microstructures, hardness and corrosion behaviors of FeCoNiNb0.5Mo0.5 and FeCoNiNb high-entropy alloys, Materials 11 (1) (2017) 16.
DOI: 10.3390/ma11010016
Google Scholar