[1]
Duerig, T.W.; Melton, K.; Stöckel, D. Engineering Aspects of Shape Memory Alloys; Butterworth-Heinemann Ltd, 1990.
Google Scholar
[2]
Benafan, O.; Notardonato, W.U.; Meneghelli, B.J.; Vaidyanathan, R. Design and development of a shape memory alloy activated heat pipe-based thermal switch. Smart Mater. Struct. 2013, 22, 105017.
DOI: 10.1088/0964-1726/22/10/105017
Google Scholar
[3]
Krishnan, V.; Bewerse, C.; Notardonato, W.; Vaidyanathan, R. A thermal conduction switch based on low hysteresis NiTiFe shape memory alloy helical springs. Adv. Cryog. Eng. 2008, 54, 3.
DOI: 10.1063/1.2900374
Google Scholar
[4]
Lemanski, J.; Krishnan, V.; Manjeri, R.M.; Notardonato, W.; Vaidyanathan, R. A low hysteresis NiTiFe shape memory alloy based thermal conduction switch. Adv. Cryog. Eng. 2006, 52A, 3.
DOI: 10.1063/1.2192327
Google Scholar
[5]
Krishnan, V.B.; Singh, J.D.; Woodruff, T.R.; Notardonato, W.U.; Vaidyanathan, R. A shape memory alloy based cryogenic thermal conduction switch. Adv. Cryog. Eng. 2004, 50A, 26.
DOI: 10.1063/1.1774548
Google Scholar
[6]
Vaidyanathan, R.; Krishnan, V.; Notardonato, W.U. Shape-Memory Thermal Conduction Switch 5. U.S. Patent No 7752866, 13 July 2010.
Google Scholar
[7]
Liu, Y. The work production of shape memory alloy. Smart Mater. Struct. 2004, 13, 552.
Google Scholar
[8]
Chikhareva, M., & Vaidyanathan, R. (2023). A Thermal, mechanical, and materials framework for a shape memory alloy heat engine for thermal management. Nanomaterials, 13(15), 2159.
DOI: 10.3390/nano13152159
Google Scholar
[9]
Salzbrenner, R. Shape memory heat engines. J. Mater. Sci. 1984, 19, 1827.
Google Scholar
[10]
Tanaka, M. Shape memory alloy engine. In Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, USA, 3–7 August 1992.
Google Scholar
[11]
Salzbrenner, R.; Cohen, M. On the thermodynamics of thermoelastic martensitic transformations. Acta Metall. 1979, 27, 739.
DOI: 10.1016/0001-6160(79)90107-x
Google Scholar
[12]
Rathod, C.; Clausen, B.; Bourke, M.; Vaidyanathan, R. Neutron diffraction investigation of hysteresis reduction and increase in linearity in the stress-strain response of superelastic NiTi. Appl. Phys. Lett. 2006, 88, 201919.
DOI: 10.1063/1.2204650
Google Scholar
[13]
Padula, S., Qiu, S., Gaydosh, D., Noebe, R., Bigelow, G., Garg, A., & Vaidyanathan, R. (2012). Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metallurgical and Materials Transactions A, 43(12), 4610-4621.
DOI: 10.1007/s11661-012-1267-5
Google Scholar