[1]
D. Chen, M. Osterman, C. Handwerker, S. Hamasha, Criteria for solder alloy adoption, Journal of Surface Mount Technology, 37 (2024) 2-7.
DOI: 10.37665/smt.v37i1.41
Google Scholar
[2]
X. Liu, G. Lu, Z. Ji, F. Wei, C. Yao, J. Wang, Effect of Ni-coated carbon nanotubes additions on the eutectic Sn–0.7Cu lead-free composite solder, metals 12 (2022) 1196.
DOI: 10.3390/met12071196
Google Scholar
[3]
R. Mayappan, A. Salleh, Intermetallic growth activation energy improvement in graphene doped Sn–3.5Ag solder, Mater. Lett. 310 (2022) 131480.
DOI: 10.1016/j.matlet.2021.131480
Google Scholar
[4]
H. Ma, J.C. Suhling, A review of mechanical properties of lead-free solders for electronic packaging, Journal of Materials Science, 44 (2009) 1141-1158.
DOI: 10.1007/s10853-008-3125-9
Google Scholar
[5]
T. Kobayashi, R. Goto, I. Shohji, Fabrication and characterization of zinc-coated aluminum particle joining materials via zincate treatment, Journal of Materials Science, 59 (2024) 20812-20823.
DOI: 10.1007/s10853-024-10421-0
Google Scholar
[6]
M. Calabretta, A. Sitta, S.M. Oliveri, G. Sequenzia, Power semiconductor devices and packages: Solder mechanical characterization and lifetime prediction, IEEE Access, 9 (2021) 22859-22867.
DOI: 10.1109/access.2021.3056281
Google Scholar
[7]
Y. Yamada, Y. Takaku, Y. Yagi, Y. Nishibe, I. Ohnuma, Y. Sutou, R. Kainuma, K. Ishida, Pb-free high temperature solders for power device packaging, Microelectronics Reliability, 46 (2004) 1932-1937.
DOI: 10.1016/j.microrel.2006.07.083
Google Scholar
[8]
Y. Nakata, M. Kurasawa, T. Hashimoto, K. Miki, I. Shohji, A study on reliability of pillar-shaped intermetallic compounds dispersed lead-free solder joint, Materials Science Forum, 941 (2018) 2087-2092.
DOI: 10.1109/eptc.2015.7412284
Google Scholar
[9]
Y. Nakata, T. Hashimoto, M. Kurasawa, Y. Hayashi, I. Shohji, Formation mechanism of pillar-shaped intermetallic compounds dispersed lead-free solder joint, IOP Conf. Series: Materials Science and Engineering, 257 (2017) 012014.
DOI: 10.1088/1757-899x/257/1/012014
Google Scholar
[10]
T. Kobayashi, A. Kubo, I. Shohji, Formation of Cu–Ni alloy plating film for improving adhesion between metal and resin, Materials Transactions, 63 (2022) 800-804.
DOI: 10.2320/matertrans.mt-mc2022002
Google Scholar
[11]
M. Ganesan, C.C. Liu, S. Pandiyarajan, C.T. Lee, H.C. Chuang, Post-supercritical CO2 electrodeposition approach for Ni–Cu alloy fabrication: An innovative eco-friendly strategy for high-performance corrosion resistance with durability, Appl. Surf. Sci., 577 (2022) 151955.
DOI: 10.1016/j.apsusc.2021.151955
Google Scholar
[12]
T. Kobayashi, I. Shohji, Joining process of dissimilar materials using three-dimensional electrodeposited Ni-Cu film, Materials and Manufacturing Processes, 36 (2021) 1076-1083.
DOI: 10.1080/10426914.2021.1885708
Google Scholar
[13]
G.B. Darband, N. Lotfi, A. Aliabadi, S. Hyun, S. Shanmugam, Hydrazine-assisted electrochemical hydrogen production by efficient and self-supported electrodeposited Ni–Cu–P@Ni–Cu nano-micro dendrite catalyst, Electrochimica Acta, 382 (2021) 138335.
DOI: 10.1016/j.electacta.2021.138335
Google Scholar
[14]
J.M. Lee, J.S. Ko, Cu–Ni alloy electrodeposition on microstructured surfaces, Journal of Materials Science, 50 (2015) 393-402.
DOI: 10.1007/s10853-014-8598-0
Google Scholar