Localized Deformation Induced IGSCC and IASCC of Austenitic Alloys in High Temperature Water

Abstract:

Article Preview

Grain boundary properties are known to affect the intergranular stress corrosion cracking (IGSCC) and irradiation assisted stress corrosion cracking behavior of austenitic alloys in high temperature water. However, it is only recently that sufficient evidence has accumulated to show that the disposition of deformation in and near the grain boundary plays a key role in intergranular cracking. Grain boundaries that can transmit strain to adjacent grains can relieve stresses without undergoing localized deformation. Grain boundaries that cannot transmit strain will either experience high stresses or high strains. High stresses can lead to wedge-type cracking and sliding can lead to rupture of the protective oxide film. These processes are also applicable to irradiated materials in which the deformation can become highly localized in the form of dislocation channels and deformation twins. These deformation bands conduct tremendous amounts of strain to the grain boundaries. The capability of a boundary to transmit strain to a neighboring grain will determine its propensity for cracking, analogous to that in unirradiated metals. Thus, IGSCC in unirradiated materials and IASCC in irradiated materials are governed by the same local processes of stress and strain accommodation at the boundary.

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Edited by:

Kikuo Kishimoto, Masanori Kikuchi, Tetsuo Shoji and Masumi Saka

Pages:

885-902

Citation:

G.S. Was et al., "Localized Deformation Induced IGSCC and IASCC of Austenitic Alloys in High Temperature Water", Key Engineering Materials, Vols. 261-263, pp. 885-902, 2004

Online since:

April 2004

Export:

Price:

$38.00

[1] Steam Generator Reference Book, Electric Power Research Institute, report TR103824, September, (1994).

[2] T. C. Lee, I. M. Robertson and H. K. Birnbaum, Metall. Trans. A, 21A (1990) p.2437.

[3] L. Priester, Mater. Sci. Engin. A 309-310 (2001) p.430.

[4] W. A. T. Clark, R. H. Wagoner and Z. Y. Shen T. C. Lee, I. M. Robertson and H. K. Birnbaum, Scripta Metall. et Mater. 26 (2) (1992) p.203.

[5] L. C. Lim and R. Raj, Acta Metall. 33 (8) (1985) p.1577.

[6] K. Onchi, N. Dohi, J.R. Soneda, R. J. Cowan, M.L. Scowen, and M.L. Castano, J. of Nucl. Mater., 320 (2003) p.194.

[7] N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, and S. Jitsukawa, J. Nucl. Mater., 283-287 (2000) p.528.

[8] C. Bailat, A. Almazouzi, M. Baluc, R. Schaublin, R. Groschel, and M. Victoria, J. Nucl. Mater., 283-287 (2000), p.446.

[9] S. Bruemmer, J.I. Cole, J.L. Brimhall, R.D. Carter, and G.S. Was, in Proc. 6 th International Symposium On Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, San Diego, CA, The Metallurgical Society, Warrendale, PA, (1993).

[10] T.S. Byun, E.H. Lee, and J.D. Hunn, “J. Nucl. Mater., 321 (2003), p.29.

[11] E.S.P. Das and M.J. Marcinkowski, “J. Appl. Phys., 43, No. 11, (1972), p.4425.

[12] F. W. Crossman, M. F. Ashby, Acta Metall., 23 (1975) p.425.

[13] B. Alexandreanu and G. S. Was, Corrosion, 59 (2003) p.705.

[14] T. Watanabe, Metall. Trans. A, 14A (1983) p.531.

[15] H. Kokawa, T. Watanabe and S. Karashima, Phil. Mag. A, 44 (6) (1981) p.1239.

[16] R.C. Pond, D.A. Smith and P.W.J. Southerden, Phil. Mag. A, 37 (1978) p.27.

[17] F. Vaillant, J-D. Mithieux, O. de Bouvier, D. Vacon, G. Zacharie, Y. Brechet and F. Louchet, Proc. 9 th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Metallurgical Society, Warrendale, PA (1999).

DOI: https://doi.org/10.1002/9781118787618.ch26

[18] P. R. Swann, Corrosion, 19, (1963) p. 102t.

[19] A. W. Thompson and I. M. Bernstein, “The Role of Metallurgical Variables in HydrogenAssisted Environmental Fracture, ” in Advances in Corrosion Science and Technology, edited by R,W. Staehle and M. G. Fontana, Vol. 7, Plenum Press, New York, NY, (1980).

[20] C. G. Rhodes and A. W. Thompson, Met. Trans. A, 8A (1977) p. (1901).

[21] R. E. Schramm and R. P. Reed, Met. Trans. A., 6A (1975) p.1345.

[22] R.E. Clausing and E.E. Bloom, in Grain Boundaries in Engineering Materials, eds. J.L. Walter, J.H. Westbrook, and D.A. Woodford, Claitors, Baton Rouge, LA, 1975. 23. J.T. Busby, Ph.D. Thesis, University of Michigan, (2001).

[24] R. B. Dropek, G. S. Was, J. Gan, J. I. Cole, T. R. Allen and E. A. Kenik, Proc. 11 th Int’l Conf. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, American Nuclear Society, La Grange Park, IL, in press.

[25] L.E. Murr, Metall. Trans. A,. 6 (1975) p.505.

[26] S. M. Bruemmer and C. H. Henager, Jr., Proc. 2 nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, ” American Nuclear Society, La Grange Park, IL, (1986) p.293.

[27] T.L. Gerber, Y.S. Garud, and S.R. Sharma, Thermal and Environmental Effects in Fatigue Research – Design Interface, PVP-vol. 71, C.E. Jaske, S.J. Hudak and M.E. Mayfield (Editors), ASME, (1983).

[28] Y.S. Garud and T.L. Gerber, “An Engineering Model for Predicting Stress Corrosion Cracking, ” Advances in Life Prediction Methods, D.A. Woodford and J.R. Whitehead (Editors), ASME, (1983).

[29] J. M. Boursier, Desjardins, F. Vaillant, Corrosion Science, 37, No. 3 (1995) p.493.

[30] J. M. Boursier, O. de Bouvier, J. M. Gras, D. Noel, R. Rios and F. Vaillant, Proc. CorrosionDeformation Interactions, ed. T. Magnin and J. M. Gras, Les Editions de Physique, Cedex, France (1993) p.117.

[31] J.A. Begley, “Strain Rate Damage Model for Alloy 600 in Primary Water”, Westinghouse Electric Corporation, EPRI NP-7008, Project S303-8, October (1990).

[32] P. L. Andresen and F. P. Ford, Int. J. Pressure Vessel and Piping, 59 (1994) p.61.

[33] G. S. Was, Proc. 11th Int’l Conf. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, American Nuclear Society, La Grange Park, IL, in press.

[34] P. M. Scott and M. Le Calvar, Proc. 6 th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Metallurgical Society, Warrendale, PA (1993) p.657.

[35] G. S. Was, D. J. Paraventi and J. L. Hertzberg, Proc. Corrosion-Deformation Interaction, CDI’96, ed. T. Magnin, Institute of Metals, London (1997) p.410.

[36] D. Paraventi and G. S. Was, Corrosion 58 (8) (2002) p.687.

[37] J. L. Hertzberg, “ Ph.D. thesis, University of Michigan (1997) p.160.

Fetching data from Crossref.
This may take some time to load.