Localized Deformation Induced IGSCC and IASCC of Austenitic Alloys in High Temperature Water

Article Preview

Abstract:

Grain boundary properties are known to affect the intergranular stress corrosion cracking (IGSCC) and irradiation assisted stress corrosion cracking behavior of austenitic alloys in high temperature water. However, it is only recently that sufficient evidence has accumulated to show that the disposition of deformation in and near the grain boundary plays a key role in intergranular cracking. Grain boundaries that can transmit strain to adjacent grains can relieve stresses without undergoing localized deformation. Grain boundaries that cannot transmit strain will either experience high stresses or high strains. High stresses can lead to wedge-type cracking and sliding can lead to rupture of the protective oxide film. These processes are also applicable to irradiated materials in which the deformation can become highly localized in the form of dislocation channels and deformation twins. These deformation bands conduct tremendous amounts of strain to the grain boundaries. The capability of a boundary to transmit strain to a neighboring grain will determine its propensity for cracking, analogous to that in unirradiated metals. Thus, IGSCC in unirradiated materials and IASCC in irradiated materials are governed by the same local processes of stress and strain accommodation at the boundary.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 261-263)

Pages:

885-902

Citation:

Online since:

April 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Steam Generator Reference Book, Electric Power Research Institute, report TR103824, September, 1994.

Google Scholar

[2] T. C. Lee, I. M. Robertson and H. K. Birnbaum, Metall. Trans. A, 21A (1990) p.2437.

Google Scholar

[3] L. Priester, Mater. Sci. Engin. A 309-310 (2001) p.430.

Google Scholar

[4] W. A. T. Clark, R. H. Wagoner and Z. Y. Shen T. C. Lee, I. M. Robertson and H. K. Birnbaum, Scripta Metall. et Mater. 26 (2) (1992) p.203.

Google Scholar

[5] L. C. Lim and R. Raj, Acta Metall. 33 (8) (1985) p.1577.

Google Scholar

[6] K. Onchi, N. Dohi, J.R. Soneda, R. J. Cowan, M.L. Scowen, and M.L. Castano, J. of Nucl. Mater., 320 (2003) p.194.

Google Scholar

[7] N. Hashimoto, S.J. Zinkle, A.F. Rowcliffe, J.P. Robertson, and S. Jitsukawa, J. Nucl. Mater., 283-287 (2000) p.528.

Google Scholar

[8] C. Bailat, A. Almazouzi, M. Baluc, R. Schaublin, R. Groschel, and M. Victoria, J. Nucl. Mater., 283-287 (2000), p.446.

Google Scholar

[9] S. Bruemmer, J.I. Cole, J.L. Brimhall, R.D. Carter, and G.S. Was, in Proc. 6 th International Symposium On Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, San Diego, CA, The Metallurgical Society, Warrendale, PA, (1993), p.537.

Google Scholar

[10] T.S. Byun, E.H. Lee, and J.D. Hunn, “J. Nucl. Mater., 321 (2003), p.29.

Google Scholar

[11] E.S.P. Das and M.J. Marcinkowski, “J. Appl. Phys., 43, No. 11, (1972), p.4425.

Google Scholar

[12] F. W. Crossman, M. F. Ashby, Acta Metall., 23 (1975) p.425.

Google Scholar

[13] B. Alexandreanu and G. S. Was, Corrosion, 59 (2003) p.705.

Google Scholar

[14] T. Watanabe, Metall. Trans. A, 14A (1983) p.531.

Google Scholar

[15] H. Kokawa, T. Watanabe and S. Karashima, Phil. Mag. A, 44 (6) (1981) p.1239.

Google Scholar

[16] R.C. Pond, D.A. Smith and P.W.J. Southerden, Phil. Mag. A, 37 (1978) p.27.

Google Scholar

[17] F. Vaillant, J-D. Mithieux, O. de Bouvier, D. Vacon, G. Zacharie, Y. Brechet and F. Louchet, Proc. 9 th International Conference on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Metallurgical Society, Warrendale, PA (1999), p.251.

DOI: 10.1002/9781118787618.ch26

Google Scholar

[18] P. R. Swann, Corrosion,19,(1963) p. 102t.

Google Scholar

[19] A. W. Thompson and I. M. Bernstein, “The Role of Metallurgical Variables in HydrogenAssisted Environmental Fracture,” in Advances in Corrosion Science and Technology, edited by R,W. Staehle and M. G. Fontana, Vol. 7, Plenum Press, New York, NY, (1980) p.53.

Google Scholar

[20] C. G. Rhodes and A. W. Thompson, Met. Trans. A, 8A (1977) p.1901.

Google Scholar

[21] R. E. Schramm and R. P. Reed, Met. Trans. A., 6A (1975) p.1345.

Google Scholar

[22] R.E. Clausing and E.E. Bloom, in Grain Boundaries in Engineering Materials, eds. J.L. Walter, J.H. Westbrook, and D.A. Woodford, Claitors, Baton Rouge, LA, 1975. 23. J.T. Busby, Ph.D. Thesis, University of Michigan, 2001.

Google Scholar

[24] R. B. Dropek, G. S. Was, J. Gan, J. I. Cole, T. R. Allen and E. A. Kenik, Proc.11 th Int’l Conf. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, American Nuclear Society, La Grange Park, IL, in press.

Google Scholar

[25] L.E. Murr, Metall. Trans. A,.6 (1975) p.505.

Google Scholar

[26] S. M. Bruemmer and C. H. Henager, Jr., Proc. 2 nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors,” American Nuclear Society, La Grange Park, IL, (1986) p.293.

Google Scholar

[27] T.L. Gerber, Y.S. Garud, and S.R. Sharma, Thermal and Environmental Effects in Fatigue Research – Design Interface, PVP-vol. 71, C.E. Jaske, S.J. Hudak and M.E. Mayfield (Editors), ASME, 1983.

Google Scholar

[28] Y.S. Garud and T.L. Gerber, “An Engineering Model for Predicting Stress Corrosion Cracking,” Advances in Life Prediction Methods, D.A. Woodford and J.R. Whitehead (Editors), ASME, 1983.

Google Scholar

[29] J. M. Boursier, Desjardins, F. Vaillant, Corrosion Science, 37, No. 3 (1995) p.493.

Google Scholar

[30] J. M. Boursier, O. de Bouvier, J. M. Gras, D. Noel, R. Rios and F. Vaillant, Proc. CorrosionDeformation Interactions, ed. T. Magnin and J. M. Gras, Les Editions de Physique, Cedex, France (1993) p.117.

Google Scholar

[31] J.A. Begley, “Strain Rate Damage Model for Alloy 600 in Primary Water”, Westinghouse Electric Corporation, EPRI NP-7008, Project S303-8, October 1990.

Google Scholar

[32] P. L. Andresen and F. P. Ford, Int. J. Pressure Vessel and Piping, 59 (1994) p.61.

Google Scholar

[33] G. S. Was, Proc. 11th Int’l Conf. Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, American Nuclear Society, La Grange Park, IL, in press.

Google Scholar

[34] P. M. Scott and M. Le Calvar, Proc. 6 th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems – Water Reactors, The Metallurgical Society, Warrendale, PA (1993) p.657.

Google Scholar

[35] G. S. Was, D. J. Paraventi and J. L. Hertzberg, Proc. Corrosion-Deformation Interaction, CDI’96, ed. T. Magnin, Institute of Metals, London (1997) p.410.

Google Scholar

[36] D. Paraventi and G. S. Was, Corrosion 58 (8) (2002) p.687.

Google Scholar

[37] J. L. Hertzberg, “ Ph.D. thesis, University of Michigan (1997) p.160.

Google Scholar