Preparation and Formation Mechanisms of Monodispersed Mesoporous SiO2 Microspheres by the PICA Method

Article Preview

Abstract:

Monodispersed mesoporous silicon dioxide microspheres were prepared by polymerization-induced colloid aggregation (PICA) method and calcined at 850oC. The prepared samples were characterized with scanning electron microscopy (SEM), thermogravimetry (TG) and BET surface areas. The results showed that the obtained SiO2 microspheres had an average diameter of about 2.0 µm, a surface area of 253.3 m2g-1, an average pore volume of 0.62 mLg-1, and an average pore diameter of 7.9 nm. The formation mechanism of SiO2 spherical particles was discussed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1153-1156

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Eiden-Assmann, J. Widoniak and G. Maret: Chem. Mater. Vol. 16 (2004), p.6.

Google Scholar

[2] J.G. Yu, M. Lei, B. Cheng and X.J. Zhao: J. Solid State Chem. Vol. 177 (2004), p.681.

Google Scholar

[3] B. Cheng, M. Lei, J.G. Yu and X.J. Zhao: Mater. Lett. Vol. 58 (2004), p.1565.

Google Scholar

[4] J.G. Yu, M. Lei, B. Cheng and X.J. Zhao: J. Crystal Growth Vol. 261 (2004), p.566.

Google Scholar

[5] M.R. Buchmeiser: J. Chromatogr. A Vol. 918 (2001), p.233.

Google Scholar

[6] J. Kirkland, F. Truszkowski, C. Dilks and G. Engel: J. Chromatogr. Vol. A890 (2000), p.3.

Google Scholar

[7] A. Dong, N. Ren, Y. Tang, Y. Wang, Y. Zhang, W. Hua and Z. Gao: J. Am. Chem. Soc. Vol. 125 (2003), p.4976.

Google Scholar

[8] K.K. Unger: Packing and Stationary Phases in Chromatographic Techniques (Dekker, New York, 1990).

Google Scholar

[9] I. Kimura, T. Kase, Y. Taguchi and M. Tanaka: Mater. Res. Bull. Vol. 38 (2003), p.585.

Google Scholar

[10] U. Trudinger, G. Muller and K.K. Unger: J. Chromatogr. A Vol. 535 (1990), p.111.

Google Scholar

[11] K. Tani and Y. Suzuki: Chromatographia Vol. 38 (1994), p.291.

Google Scholar

[12] Y.R. Ma, L.M. Qi, J.M. Ma, Y.Q. Wu, O. Liu and H.M. Cheng: Coll. Surf. A Vol. 229 (2003), p.1.

Google Scholar

[13] R.K. Iler and H.J. McQueston: U. S. Patent 4, 010, 242 (1997).

Google Scholar

[14] R. Guo, J.G. Yu, L. Zhao and X.J. Zhao: Acta Chim. Sinica Vol. 62 (2004), p.493.

Google Scholar

[15] B.D. Yao and L.D. Zhang: J. Mater. Sci. Vol. 34 (1999), p.5983.

Google Scholar

[16] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska: Pure Appl. Chem. Vol. 57 (1985), p.603.

DOI: 10.1002/9783527619474.ch11

Google Scholar

[17] J.G. Yu, J.C. Yu, M.K.P. Leung, W.K. Ho, B. Cheng, X.J. Zhao and J.C. Zhao: J. Catal. Vol. 217 (2003), p.69.

Google Scholar

[18] J.G. Yu, J.C. Yu, W.K. Ho and Z.T. Jiang: New J. Chem. Vol. 26 (2002), p.607.

Google Scholar

[19] J.C. Yu, J.G. Yu and J.C. Zhao: Appl. Catal. B Vol. 36 (2002), p.31.

Google Scholar