Preparation and Formation Mechanisms of Monodispersed Mesoporous SiO2 Microspheres by the PICA Method

Abstract:

Article Preview

Monodispersed mesoporous silicon dioxide microspheres were prepared by polymerization-induced colloid aggregation (PICA) method and calcined at 850oC. The prepared samples were characterized with scanning electron microscopy (SEM), thermogravimetry (TG) and BET surface areas. The results showed that the obtained SiO2 microspheres had an average diameter of about 2.0 µm, a surface area of 253.3 m2g-1, an average pore volume of 0.62 mLg-1, and an average pore diameter of 7.9 nm. The formation mechanism of SiO2 spherical particles was discussed.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1153-1156

Citation:

L. Zhao et al., "Preparation and Formation Mechanisms of Monodispersed Mesoporous SiO2 Microspheres by the PICA Method", Key Engineering Materials, Vols. 280-283, pp. 1153-1156, 2005

Online since:

February 2007

Export:

Price:

$41.00

[1] S. Eiden-Assmann, J. Widoniak and G. Maret: Chem. Mater. Vol. 16 (2004), p.6.

[2] J.G. Yu, M. Lei, B. Cheng and X.J. Zhao: J. Solid State Chem. Vol. 177 (2004), p.681.

[3] B. Cheng, M. Lei, J.G. Yu and X.J. Zhao: Mater. Lett. Vol. 58 (2004), p.1565.

[4] J.G. Yu, M. Lei, B. Cheng and X.J. Zhao: J. Crystal Growth Vol. 261 (2004), p.566.

[5] M.R. Buchmeiser: J. Chromatogr. A Vol. 918 (2001), p.233.

[6] J. Kirkland, F. Truszkowski, C. Dilks and G. Engel: J. Chromatogr. Vol. A890 (2000), p.3.

[7] A. Dong, N. Ren, Y. Tang, Y. Wang, Y. Zhang, W. Hua and Z. Gao: J. Am. Chem. Soc. Vol. 125 (2003), p.4976.

[8] K.K. Unger: Packing and Stationary Phases in Chromatographic Techniques (Dekker, New York, 1990).

[9] I. Kimura, T. Kase, Y. Taguchi and M. Tanaka: Mater. Res. Bull. Vol. 38 (2003), p.585.

[10] U. Trudinger, G. Muller and K.K. Unger: J. Chromatogr. A Vol. 535 (1990), p.111.

[11] K. Tani and Y. Suzuki: Chromatographia Vol. 38 (1994), p.291.

[12] Y.R. Ma, L.M. Qi, J.M. Ma, Y.Q. Wu, O. Liu and H.M. Cheng: Coll. Surf. A Vol. 229 (2003), p.1.

[13] R.K. Iler and H.J. McQueston: U. S. Patent 4, 010, 242 (1997).

[14] R. Guo, J.G. Yu, L. Zhao and X.J. Zhao: Acta Chim. Sinica Vol. 62 (2004), p.493.

[15] B.D. Yao and L.D. Zhang: J. Mater. Sci. Vol. 34 (1999), p.5983.

[16] K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquerol and T. Siemieniewska: Pure Appl. Chem. Vol. 57 (1985), p.603.

[17] J.G. Yu, J.C. Yu, M.K.P. Leung, W.K. Ho, B. Cheng, X.J. Zhao and J.C. Zhao: J. Catal. Vol. 217 (2003), p.69.

[18] J.G. Yu, J.C. Yu, W.K. Ho and Z.T. Jiang: New J. Chem. Vol. 26 (2002), p.607.

[19] J.C. Yu, J.G. Yu and J.C. Zhao: Appl. Catal. B Vol. 36 (2002), p.31.