Improving Subcritical Crack Growth Resistance for Alumina Glass Dental Composite

Article Preview

Abstract:

Abstract. The improvement of subcritical crack growth (SCG) resistance for alumina glass dental composites was explored in this study. The addition of nitrogen to the glass phases in the composite was found to increase the SCG resistance, where the SCG exponent n increases from 22 for the oxide glass composites to 30 for the composites containing 0.5 mol% nitrogen in the glass phases. The improvement was tentatively attributed to the nitrogen addition, which makes the glass network stronger through forming the non-flexible Si-N bonds and thus inhibits the hydrolysis reactions under the SCG conditions. Analyses demonstrated that the increase of the n value from 22 to 30 offers the potential to greatly extend the lifetime and improve the long-term reliability for the alumina glass dental composites.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1623-1628

Citation:

Online since:

February 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Q. Zhu, G. de With, L. J. M. G. Dortmans and F. Feenstra: J. Biomed. Mater. Res. Appl. Biomater. Vol. 65B (2003), p.233.

Google Scholar

[2] E. D. Rekow and P. Thompson: Key Eng. Mater. Vol. 198-199 (2001), p.115.

Google Scholar

[3] J. R. Kelly: Annu. Rev. Mater. Sci. Vol. 27 (1997), p.443.

Google Scholar

[4] S. M. Wiederhorn: Fracture mechanics of ceramics (Plenum, New, York, USA 1974), p.613.

Google Scholar

[5] M. Tyszblat: US Patent No. 4 772 436, (1988).

Google Scholar

[6] P. Chantikul, G. R. Anstis and B. R. Lawn: J. Am. Ceram. Soc. Vol. 64 (1981), p.539.

Google Scholar

[7] R. E. Loehman: J. Non-Cryst. Solids Vol. 56 (1983), p.123.

Google Scholar

[8] D. de Graaf: Chemistry, Structure and properties of rare-earth containing Si-Al-O-N glasses (Ph.D. thesis, Eindhoven University of Technology, the Netherlands, 2004).

Google Scholar

[9] D. N. Coon: J. Non-Cryst. Solids Vol. 226 (1998), p.281.

Google Scholar

[10] A. Bhatnagar, M. J. Hoffman and R. H. Dauskardt: J. Am. Ceram. Soc. Vol. 83 (2000), p.585.

Google Scholar

[11] S. Sakka: J. Non-Cryst. Solids Vol. 181 (1995), p.215.

Google Scholar

[12] T. A. Michalski and B. C. Bunker: J. Appl. Phys. Vol. 56 (1984), p.2686.

Google Scholar

[13] J. E. Ritter: Fracture mechanics of ceramics (Plenum, New York, USA, 1976), p.667.

Google Scholar

[14] M. L. Myers, J. W. Ergle, C. W. Fairhurst and R. D. Ringle: Int. J. Prosthodont. Vol. 7 (1994), p.253.

Google Scholar