Preparation and Characterization of Compositionally Graded Epitaxial Barium Strontium Titanate Thin Films via Scanning Probe Microscopy

Abstract:

Article Preview

Epitaxially graded barium strontium titanate (BaxSr1-x)TiO3 (x = 0.75, 0.8, 0.9, 1.0, abbreviated as BST75, BST80, BST90 and BTO respectively) thin films were fabricated by pulsed laser deposition method on the (La0.7Sr0.3)MnO3 (LSMO)/LaAlO3 (LAO) single crystal substrate. Scanning probe microscopy with a contact mode was used to characterize the temperature dependence of polarization from room temperature to 140°C. Results indicated that the piezo-response signal of the BST graded films had an obvious change with temperature, and that the graded structures had a flatter temperaturedependence of permittivity. Furthermore, the contrasts of the SPM images were lower for the ferroelectric – paraelectric (F-P) phase transition temperatures of BST 75, BST 80, and BST90, but higher for the F-P transition temperature of BTO.

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Edited by:

Wei Pan, Jianghong Gong, Chang-Chun Ge and Jing-Feng Li

Pages:

1903-1908

Citation:

S. G. Lu et al., "Preparation and Characterization of Compositionally Graded Epitaxial Barium Strontium Titanate Thin Films via Scanning Probe Microscopy", Key Engineering Materials, Vols. 280-283, pp. 1903-1908, 2005

Online since:

February 2007

Export:

Price:

$38.00

[1] Y. Miyamoto, W. A. Kaysser, B. H. Rabin (ed. ): Functionally Graded Materials: Design, Processing and Applications (Kluwer, London, 1999), p.97.

[2] M. Brazier, M. McElfresh and S. Mansour: Appl. Phys. Lett. Vol. 72 (1998), p.1121.

[3] F. Jin, G. W. Auner, R. Naik, et al.: Appl. Phys. Lett. Vol. 73 (1998), p.2838.

[4] D. H. Bao, L. Y. Zhang and X. Yao: Appl. Phys. Lett. Vol. 76 (2000), p.1063.

[5] D. H. Bao, N. Mizutani, X. Yao and L. Y. Zhang: Appl. Phys. Lett. Vol. 77 (2000), p.1203.

[6] M. E. Lines and A. M. Glass: Principles and Applications of ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977), p.244, 255.

[7] J. F. Scott: Ann. Rev. Mater. Sci. Vol. 28 (1998), p.79.

[8] P. Padmini, T. R. Taylor, M. J. Lefevre, et al.: Appl. Phys. Lett. Vol. 75 (1999), p.3186.

[9] A. Gruverman, O. Auciello and H. Tokumoto: Ann. Rev. Mater. Sci. Vol. 28 (1998), p.101.

[10] M Tyunina, J. Wittborn, K. V. Rao, et al.: Appl. Phys. Lett. Vol. 74 (1999), p.3191.

[11] G. D. Hu, J. B. Xu and I. H. Wilson: Appl. Phys. Lett. Vol. 75 (1999), p.1610.

[12] S. V. Kalinin and D. A. Bonnell: Appl. Phys. Lett. Vol. 78 (2001), p.1116.

[13] O. Auciello, C. M. Foster and R. Ramesh: Ann. Rev. Mater. Sci. Vol. 28 (1998), p.501.

[14] C. M. Carlson, T. V. Rivkin, P. A. Parilla, et al.: Appl. Phys. Lett. Vol. 76 (2000), pp. (1920).

[15] Y. Gim, T. Hudson, Y. Fan, et al.: Appl. Phys. Lett. Vol. 77 (2000), p.1200.

[16] W.B. Wu, K.H. Wong, C. L. Choy and Y. H. Zhang: Appl. Phys. Lett. Vol. 77 (2000), p.3441.

[17] S.G. Lu, X. H. Zhu, C. L. Mak, et al.: Appl. Phys. Lett. Vol. 82 (2003), p.2877.

[18] S. G. Lu, X. H. Zhu, C. L. Mak, et al.: Mater. Chem. Phys. Vol. 79 (2003), p.164.

[19] S. G. Lu, C. L. Mak, L. Y. Zhang and X. Yao: Ferroelectrics Vol. 229 (1999), p.241.

[20] C. Hubert, J. Levy, E. J. Cukauskas and S. Kirchoefer: Phys. Rev. Lett. Vol. 85 (2000), pp. (1998).

[21] E. Z. Luo, Z. Xie, J. B. Xu, I. H. Wilson and L. H. Zhao: Phys. Rev. B Vol. 61 (2000), p.203.

Fetching data from Crossref.
This may take some time to load.