Influence of Powder Particle Size of Slurries on Mechanical Properties of Porous Hydroxyapatite Ceramics

Abstract:

Article Preview

The effect of different particle sizes on the flexural strength and microstructure of three different types of hydroxyapatite (HAp) powders was studied. The powder characteristics of laboratory synthesized HAp powder (Lab1 and Lab2) were obtained through a wet milling method, and the median particle size and the specific surface area of powders are different with the dryness period. The median particle sizes of Lab1 and Lab2 are 0.34 µm and 0.74 µm, and the specific surface areas of Lab1 and Lab2 are 38.01 m2/g and 19.77 m2/g. The commercial HAp had median particle size of 1.13 µm and specific surface area of 11.62m2/g. The different powder characteristics affected the slip characteristics, and the flexural strength and microstructure of the sintered porous HAp bodies are also different. The optimum value for the minimum viscosity in these present HAp slip with respect to its solid loading and the optimum amount of the deflocculant were investigated. The flexural strengths of the porous HAp ceramics prepared by heating at 1200°C for 3 hrs in air were 17.59 MPa for Lab1 with a porosity of 60.48%, 10.51 MPa for Lab2 with a porosity of 57.75%, and 3.92 MPa for commercial HAp with a porosity of 79.37%.

Info:

Periodical:

Key Engineering Materials (Volumes 284-286)

Main Theme:

Edited by:

Panjian Li, Kai Zhang and Clifford W. Colwell, Jr.

Pages:

365-368

DOI:

10.4028/www.scientific.net/KEM.284-286.365

Citation:

Y. Zhang et al., "Influence of Powder Particle Size of Slurries on Mechanical Properties of Porous Hydroxyapatite Ceramics ", Key Engineering Materials, Vols. 284-286, pp. 365-368, 2005

Online since:

April 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.