Giant Polarization Properties of Ba-Based Bismuth Layer-Structured Ferroelectrics

Article Preview

Abstract:

Intergrowth-structured Bi4Ti3O12-BaBi4Ti4O15 (BiT-BBTi) single crystals were grown by a self-flux method, and the crystal structure and polarization properties were investigated. Transmission electron microscope observations and X-ray diffraction analysis presented direct evidence of the intergrowth structure composed of the alternate stacking of BiT and BBTi layers. The BiT-BBTi crystals showed a giant spontaneous polarization (Ps) along the a axis of 52 μC/cm2, which was larger than those of the crystals of BiT (46 μC/cm2) and BBTi (16 μC/cm2). The large Ps of the BiT-BBTi crystals is suggested to originate from the ferroelectric displacements of the Bi of Bi2O2 layers as well as from the Bi substitution for Ba induced by compositional deviation. It was found that the polarization properties of the BiT-BBTi crystals depend strongly on the composition.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

3-6

Citation:

Online since:

January 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. A. P. de Araujo, J. D. Cuchiaro, L. D. McMillan, M. C. Scott and J. F. Scott, Nature, 374 (1995), p.627.

Google Scholar

[2] B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee and W. Joe, Nature, 401 (1999) , p.682.

Google Scholar

[3] S. B. Desu and D. P. Vijay, Mater. Sci. Eng. B., 32 (1995), p.75.

Google Scholar

[4] O. Auciello, A. R. Krauss, J. Im, D. M. Gruen, E. A. Irene, R. P. H. Chang and G. E. McGuire, Appl. Phys. Lett., 69 (1996) , p.2671.

Google Scholar

[5] T. Kikuchi, J. Less-Common Met., 48 (1976), p.319.

Google Scholar

[6] T. Kikuchi, A. Watanabe and K. Uchida, Mater. Res. Bull., 12 (1977), p.299.

Google Scholar

[7] Y. Noguchi, M. Miyayama and T. Kudo, Appl. Phys. Lett., 77 (2000), p.3639.

Google Scholar

[8] A. Shibuya, M. Noda, M. Okuyama, H. Fujisawa and M. Shimizu, Appl. Phys. Lett., 82 (2003), p.784.

Google Scholar

[9] R. Maalal, R. Muhll, G. Trolliard and J. -P. Mercurio, J. Phys. Chem. Solids, 57 (1996) , p. (1957).

Google Scholar

[10] Y. Goshima, Y. Noguchi and M. Miyayama, Appl. Phys. Lett., 81 (2002), p.2226.

Google Scholar

[11] T. Kobayashi, Y. Noguchi and M. Miyayama, Jpn. J. Appl. Phys., 43 (2004), p.6653.

Google Scholar

[12] S. E. Cummins and L. E. Cross, J. Appl. Phys., 39 (1968) , p.2268.

Google Scholar

[13] H. Irie, M. Miyayama and T. Kudo, Jpn. J. Appl. Phys., 40 (2001), p.239.

Google Scholar

[14] Y. Noguchi, R. Satoh, M. Miyayama and T. Kudo, J. Ceram. Soc. Jpn., 109 (2001), p.29.

Google Scholar

[15] Y. Noguchi, Y. Goshima and M. Miyayama, Trans. Mater. Res. Soc. Jpn., 28 (2003), p.113.

Google Scholar