Conductivity Switching Behaviors in ZrO2 and YSZ Films Deposited by Pulsed Laser Depositions

Article Preview

Abstract:

Polycrystalline ZrO2 and yttria-stablilized ZrO2 thin films have been deposited on Pt/Ti/SiO2/Si substrates by pulsed laser deposition methods. Pt/ZrO2/Pt and Pt/YSZ/Pt capacitor structures show giant conductivity switching behaviors which can be utilized for nonvolatile memory devices. Maximum on/off ratio of 106 and good endurance even after 105 times conductivity switching are observed in a typical Pt/ZrO2/Pt whose ZrO2 film has been deposited at 100 °C and an oxygen pressure of 50 mTorr. The Pt/ZrO2/Pt structure exhibits two ohmic behaviors in the low voltage region (V < 1.4 V) depending on the value of previously applied high voltage and Schottky-type conduction in the high voltage region (1.4 V < V < 8.9 V). It seems that conductivity switching behaviors in our Pt/ZrO2/Pt structure result from the changes in both the Schottky barrier and the bulk conductivity controlled by applied voltages. A Pt/YSZ/Pt capacitor structure has more stable reset voltage and current state than a Pt/ZrO2/Pt capacitor structure. Moreover, a Pt/YSZ/Pt capacitor structure shows higher Conductivity than a Pt/ZrO2/Pt capacitor structure, which may result from substitution of Y3+ ions for Zr4+ ions.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

1301-1306

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. R. Ovshinsky: Phys. Rev. Lett. Vol. 36 (1968), p.1469.

Google Scholar

[2] Xin Jiang, Alex F. Panchula, and Stuart S. P. Parkin: Appl. Phys. Lett. Vol. 83 (2003), p.5244.

Google Scholar

[3] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel, and D. Widmer: Appl. Phys. Lett. Vol. 77 (2000), p.139.

Google Scholar

[4] S. Q. Liu, N. J. Wu, and A. Ignatiev: Appl. Phys. Lett. Vol. 76 (2000), p.2749.

Google Scholar

[5] W. R. Hiatt and T. W. Hickmott: Appl. Phys. Lett. Vol. 6(1965), p.106.

Google Scholar

[6] F. Argall: Solid-State Electron. Vol. 11 (1968), p.535.

Google Scholar

[7] J. F. Gibbons and W. E. Beadle, Solid-State Electron. Vol. 7 (1964), p.785.

Google Scholar

[8] K. C. Park and S. Basavaiah: J. Non-Crystalline Solids. Vol. 2 (1970), p.284.

Google Scholar

[9] J. P. Chang and Y. -S. Lin: Appl. Phys. Lett. Vol. 79 (2001), p.3666.

Google Scholar

[10] Byeong-Ok Cho, Jianjun Wang, Lin Sha, and Jane P. Chang: Appl. Phys. Lett. Vol. 80 (2002), p.1052.

Google Scholar

[11] N. M. Balzaretti and J. A. H. da Jornada: Phys. Rev. B Vol. 52 (1995), p.9288.

Google Scholar

[12] Y. Watanabe, J. G. Bednorz, A. Bietsch, Ch. Gerber, D. Widmer, A. Beck, and S. J. Wind: Appl. Phys. Lett. Vol. 78(2001), p.3738.

DOI: 10.1063/1.1377617

Google Scholar