Fracture Toughness of Nanoscale Hydroxyapatite Coatings on Titanium Substrates

Article Preview

Abstract:

In the biomedical field, the surface modification of titanium aims to inhibit wear, reduce corrosion and ion release, and promote biocompatibility. Sol-gel-derived ceramic nanoscale coatings show promise due to their relative ease of production, ability to form a physically and chemically uniform coating over complex geometric shapes, and their potential to deliver exceptional mechanical properties due to their nanocrystalline structure. In this study hydroxyapatite coatings on titanium were investigated for their fracture toughness.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

1307-1312

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kirk, P.B., Filiaggi, M., Sodhi, R., Pilliar, R., Journal of Biomedical Materials Research (USA), 48(4) (1999), p.424.

Google Scholar

[2] Chen, Y. and Liu, W., Materials Letters, 55(6) (2002, p.407.

Google Scholar

[3] Filiaggi, M.J., Pilliar, R.M. and Abdullah, D., Journal of Biomedical Materials Research, 33(4) (1996), p.239.

Google Scholar

[4] Kirk, P. and Pilliar, R., J. Mater. Sci., 34 (16) (1999), p.3967.

Google Scholar

[5] Jaffe, W.L. and Scott, D.F., The Journal of Bone and Joint Surgery (American Volume), 78A(12) (1996) p. (1918).

Google Scholar

[6] Brunette, D.M., Titanium in Medicine - Material Science, Surface Science, Engineering, Biological Responses and Medical Applications, (Springer Heidelberg, 2001, p.1000).

Google Scholar

[7] Oonishi, H., Bioceramics. in Proceedings of 1st International Bioceramic Symposium. 1988. Kyoto, Japan (Ishiyaku EuroAmerica Inc ., 1989).

Google Scholar

[8] de Lange, G.L. and K. Donath, Biomaterials, 10 (1989) p.121.

Google Scholar

[9] Sousa, S.R. and Barbosa, M.A., Biomaterials, 17 (1996) p.397.

Google Scholar

[10] Ducheyne, P. and Healy, K., Bioceramics. in Proceedings of 1st International Bioceramic Symposium. 1988. Kyoto, Japan: (Ishiyaku EuroAmerica Inc., 1989).

Google Scholar

[11] Lowenheim, F.A., ed. Modern Electroplating. 3rd ed. (Wiley - Interscience. 1974 p.801.

Google Scholar

[12] Critchlow, G.W. and Brewis, D.M., International Journal of Adhesion and Adhesives,. 15(3): (1995) p.161.

Google Scholar

[13] Arsov, L.D., Electrochimica Acta, 30(12) (1985). p.1645.

Google Scholar

[14] Aladjem, A., Journal of Materials Science, 8 (1973) p.688.

Google Scholar

[15] Delplancke, J.L. and Winand, R., Electrochimica Acta, 33 (1988) p.1539.

Google Scholar

[16] Blondeau, G., Froelicher, M., Froment, M. and. Hugot-Le Goff, A., Thin Solid Films,. 42(2) (1977), p.147.

DOI: 10.1016/0040-6090(77)90411-4

Google Scholar

[17] Milev, A., Chemistry, Synthesis and Morphological Stability of Sol-gel Derived Carbonate Substituted Plate-Like Hydroxyapatite. PhD Thesis, UTS: Sydney (2003).

Google Scholar

[18] Milev, A., G.S.K. Kannangara, and B. Ben-Nissan. Bioceramics 14 Proceedings. (2001).

Google Scholar

[19] Titanium- A Technical Guide, ed. M.J.J. Donachie., (ASM International Metals Park OH 1988 p.1004).

Google Scholar

[20] Metals Handbook Desk Edition. 2 ed, ed. J.R. Davis: ASM. p.1521.

Google Scholar

[21] Hu, M.S. and Evans, A.G., Acta Metallurgica,. 37(3) (1989). p.917.

Google Scholar

[22] Ignat, M., Key Engineering Materials, 116-117 (1996). p.279.

Google Scholar

[23] Beuth, J.L. and Klingbeil, N.W., J. Mech. Phys. Solids, 44(9) (1996). p.1411.

Google Scholar

[24] Ask, M., Rolander, U., Lausmaa, J. and Kasemo, B., J. Mater. Res., 5(8) (1990) p.1662.

Google Scholar

[25] Delplancke, J.L., Garnier A, Massiani Y, Winand R.,. Electrochimica Acta, 39(8-9) (1994) p.1281.

Google Scholar

[26] Blondeau, G., et al., J Microsc. Spectrosc Electron 2 (1977) p.27.

Google Scholar