Immediate Mechanism of the Osteoconductivity of the Polarized Hydroxyapatite

Article Preview

Abstract:

We investigated the immediate response in the vicinity of the implanted polarized hydroxyapatite (HA). One of the important immediate events was found to be the fibrin adsorption on the implanted HA. The activation of the fibrin adsorption on the polarized HA was confirmed by the observation by SEM observation and immunohistochemical detection. After the implantation, the coagulation cascade induced the wound healing. The adsorbed fibrin was formed network structure and worked for later cell responses as the scaffolds. The acceleration of fibrin scaffolds formation in the vicinity of the implanted polarized HA contributed to the stimulation and activation of platelets and osseous cells. The platelets were activated from the results of the signal transduction and cytoskeleton changes and released growth factors. The growth factors released from platelets led to bone regeneration by stimulating migration and proliferation of the osseous cells. In the vicinity of the implanted HA samples, the coagulation cascade reaction to repair wound healing led to the new bone formation by mediation of the platelets and osseous cells. The mechanism of osteoconduction at earlier stage had close relationships to the electrostatic properties of the implant.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 309-311)

Pages:

149-152

Citation:

Online since:

May 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. A. Puleo, A. Nanci: Biomaterials Vol. 20 (1999), p.2311.

Google Scholar

[2] L. Christenson, P. Aebischer, P. McMillan, GP. M. Alletti; J. Biomed. Mater. Res. Vol. 23 (1989), p.705.

Google Scholar

[3] N. Kossovsky, D. Millett, S. Juma, N. Little, P. C. Briggs, S. Raz, E. Berg; J. Biomed. Mater. Res. Vol. 25 (1991), p.1287.

DOI: 10.1002/jbm.820251009

Google Scholar

[4] R. W. Colman; J. Clin. Invest. Vol. 73 (1984), p.1249.

Google Scholar

[5] R. J. Gobel, J. Janatova, J. M. Googe, D. J. Apple; Biomaterials Vol. 8 (1987), p.285.

Google Scholar

[6] A. H. Hogt, J. Dankert, J. Feijen; J. Biomed. Mater. Res. Vol. 20 (1986), p.533.

Google Scholar

[7] K. Yamashita, N. Oikawa, T. Umegaki; Chem. Mater. Vol. 8(1996), p.2697.

Google Scholar

[8] K. Yamashita, K. Kitagaki, T. Umegaki; J. Amer. Ceram. Soc. Vol. 78 (1995), p.1191.

Google Scholar

[9] S. Nakamura, H. Takeda, K. Yamashita; J. Appl. Phys. Vol. 89 (2001), p.5386.

Google Scholar

[10] K. Yamashita, S. Nakamura, J, Ceram. Soc. Jpn. Vol. 113 (2005), p.9.

Google Scholar

[11] T. Kobayashi, S. Nakamura, K. Yamashita; J. Biomed. Mater. Res. Vol. 57 (2001), p.477.

Google Scholar

[12] N. C. Teng, S. Nakamura, Y. Takagi, Y. Yamashita, M. Ohgaki, K. Yamashita; J. Dent. Res. Vol. 80 (2001), p. (1925).

Google Scholar

[13] S. Nakamura, T. Kobayashi, K. Yamashita; J. Biomed. Mater. Res. Vol. 61 (2002), p.593.

Google Scholar

[14] S. Nakamura, T. Kobayashi, K. Yamashita; J. Biomed. Mater. Res. Vol. 68A (2004), p.90.

Google Scholar

[15] Y. Yamada, J. S. Boo, R. Ozawa, T. Nagasaka, Y. Okazaki, K. Hata, M. Ueda; J. Cranio-Maxillofac. Surg. Vol. 31 (2003), p.27.

Google Scholar

[16] S. Abiraman, H. K. Varma, P. R. Umashankar, A. John; Biomaterials Vol. 23 (2003), p.3023.

Google Scholar

[17] W. Bensaid, J. T. Triffitt, C. Blanchat, K. Oudina, L. Sedel, H. Petite; Biomaterials Vol. 24 (2003), p.2497.

DOI: 10.1016/s0142-9612(02)00618-x

Google Scholar

[18] A. R. Sanchez, P. J. Sheridan, L. I. Kupp; Int. J. Oral Maxillofac. Implants Vol. 18 (2003), p.93.

Google Scholar

[19] W. E. Oprea, J. M. Karp, M. M. Hosseini, J. E. Davies; J. Craniofac. Surg. Vol. 14 (2003), p.292.

Google Scholar