Investigation into the Dynamic Fracture Properties of Large Scale Functionally Graded Materials

Abstract:

Article Preview

A crack propagation perpendicular to gradient in a large scale functionally gradient materials, which has (1) a linear variation of Young’s modulus with a constant mass density and Poisson’s ratio, and (2) a exponential variation of Young’s modulus with a constant mass density and Poisson’s ratio, is modelled by finite element methods. Based on the experimental result of large scale functionally gradient materials, the dynamic propagation process of the FGMs is modelled and the dynamic parameters, like the energy release rate and crack tip opening angle, are calculated through a generation phase.

Info:

Periodical:

Key Engineering Materials (Volumes 324-325)

Edited by:

M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz

Pages:

239-242

DOI:

10.4028/www.scientific.net/KEM.324-325.239

Citation:

X. B. Yang et al., "Investigation into the Dynamic Fracture Properties of Large Scale Functionally Graded Materials", Key Engineering Materials, Vols. 324-325, pp. 239-242, 2006

Online since:

November 2006

Export:

Price:

$35.00

[1] M. Niino, T. Hirai , R. Watanabe, J. Materials. The functionally gradient. J. Jpn. Soc. Comp. Mater. 13 (1) (1987), p.257.

[2] A. Kawasaki, R. Watanabe. Finite element analysis of thermal stress of the metal/ceramic multi-layer composites with compositional gradients. Journal of Japan institute of Metals. 51 (1987), pp.525-529.

[3] S. Uemura. The activities of FGM on new application. Materials Sciences Forum. 423-425 (2003), pp.1-10.

[4] F. Delale, F. Erdogan. The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50 (1983), pp.609-614.

DOI: 10.1115/1.3167098

[5] F. Erdogan. Fracture mechanics of functionally graded materials. Composites Engineering. 5 (7) (1995), pp.753-770.

DOI: 10.1016/0961-9526(95)00029-m

[6] Jin, Z.H., R.C. Batra. Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids. 44 (8) (1996), pp.1221-1235.

DOI: 10.1016/0022-5096(96)00041-5

[7] Jin, Z.H., R.C. Batra. R-curve and strength behavior of functionally graded materials. Mat. Sci. Eng. A 244 (1998), pp.70-76.

[8] Gu, P., R.J. Asaro. Cracks in functionally graded materials. Int. J. Solids Struc. 34 (1) (1997), pp.1-17.

[9] P.R. Marur, H.V. Tippur. Evaluation of mechanical properties of functionally graded materials. J. Testing and Evaluation. (1998), pp.539-545.

DOI: 10.1520/jte12112j

[10] J. Lambros, M.H. Santare, Li, H., G.I. Sapna. A novel technique for the fabrication of laboratory scale functionally graded materials. Exp. Mech. 39(3) (1999), pp.184-190.

DOI: 10.1007/bf02323551

[11] V. Parameswaran, A. Shukla. Crack-tip stress field for dynamic fracture in functionally gradient materials. Mechanics of materials. 31 (1999), pp.579-596.

DOI: 10.1016/s0167-6636(99)00025-3

[12] V. Parameswaran, A. Shukla. Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials. J. Appl. Mech. 69 (2002), pp.240-243.

DOI: 10.1115/1.1459072

[13] Kwang Ho Lee. Characteristics of a crack propagating along the gradient in functionally gradient materials. Int. J. Solids Struc. 41 (2004), pp.2879-2898.

DOI: 10.1016/j.ijsolstr.2004.01.004

[14] Zhuang, Z., Guo, Y.J. The analysis for dynamic fracture mechanism in Pipelines. Engineering fracture of mechanics. 64 (1999), pp.271-289.

DOI: 10.1016/s0013-7944(99)00079-x

[15] You, X.C., Zhuang, Z., Feng, Y.R., Huo, C.Y., Zhuang, C.J. Crack Arrest in a Rupturing Steel Gas Pipelines. International Journal of Fracture. 123 (2003), pp.1-14.

DOI: 10.1023/b:frac.0000005791.79914.82

In order to see related information, you need to Login.