Investigation into the Dynamic Fracture Properties of Large Scale Functionally Graded Materials

Article Preview

Abstract:

A crack propagation perpendicular to gradient in a large scale functionally gradient materials, which has (1) a linear variation of Young’s modulus with a constant mass density and Poisson’s ratio, and (2) a exponential variation of Young’s modulus with a constant mass density and Poisson’s ratio, is modelled by finite element methods. Based on the experimental result of large scale functionally gradient materials, the dynamic propagation process of the FGMs is modelled and the dynamic parameters, like the energy release rate and crack tip opening angle, are calculated through a generation phase.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 324-325)

Pages:

239-242

Citation:

Online since:

November 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Niino, T. Hirai , R. Watanabe, J. Materials. The functionally gradient. J. Jpn. Soc. Comp. Mater. 13 (1) (1987), p.257.

Google Scholar

[2] A. Kawasaki, R. Watanabe. Finite element analysis of thermal stress of the metal/ceramic multi-layer composites with compositional gradients. Journal of Japan institute of Metals. 51 (1987), pp.525-529.

DOI: 10.2320/jinstmet1952.51.6_525

Google Scholar

[3] S. Uemura. The activities of FGM on new application. Materials Sciences Forum. 423-425 (2003), pp.1-10.

Google Scholar

[4] F. Delale, F. Erdogan. The crack problem for a nonhomogeneous plane. J. Appl. Mech. 50 (1983), pp.609-614.

DOI: 10.1115/1.3167098

Google Scholar

[5] F. Erdogan. Fracture mechanics of functionally graded materials. Composites Engineering. 5 (7) (1995), pp.753-770.

DOI: 10.1016/0961-9526(95)00029-m

Google Scholar

[6] Jin, Z.H., R.C. Batra. Some basic fracture mechanics concepts in functionally graded materials. J. Mech. Phys. Solids. 44 (8) (1996), pp.1221-1235.

DOI: 10.1016/0022-5096(96)00041-5

Google Scholar

[7] Jin, Z.H., R.C. Batra. R-curve and strength behavior of functionally graded materials. Mat. Sci. Eng. A 244 (1998), pp.70-76.

Google Scholar

[8] Gu, P., R.J. Asaro. Cracks in functionally graded materials. Int. J. Solids Struc. 34 (1) (1997), pp.1-17.

Google Scholar

[9] P.R. Marur, H.V. Tippur. Evaluation of mechanical properties of functionally graded materials. J. Testing and Evaluation. (1998), pp.539-545.

DOI: 10.1520/jte12112j

Google Scholar

[10] J. Lambros, M.H. Santare, Li, H., G.I. Sapna. A novel technique for the fabrication of laboratory scale functionally graded materials. Exp. Mech. 39(3) (1999), pp.184-190.

DOI: 10.1007/bf02323551

Google Scholar

[11] V. Parameswaran, A. Shukla. Crack-tip stress field for dynamic fracture in functionally gradient materials. Mechanics of materials. 31 (1999), pp.579-596.

DOI: 10.1016/s0167-6636(99)00025-3

Google Scholar

[12] V. Parameswaran, A. Shukla. Asymptotic stress fields for stationary cracks along the gradient in functionally graded materials. J. Appl. Mech. 69 (2002), pp.240-243.

DOI: 10.1115/1.1459072

Google Scholar

[13] Kwang Ho Lee. Characteristics of a crack propagating along the gradient in functionally gradient materials. Int. J. Solids Struc. 41 (2004), pp.2879-2898.

DOI: 10.1016/j.ijsolstr.2004.01.004

Google Scholar

[14] Zhuang, Z., Guo, Y.J. The analysis for dynamic fracture mechanism in Pipelines. Engineering fracture of mechanics. 64 (1999), pp.271-289.

DOI: 10.1016/s0013-7944(99)00079-x

Google Scholar

[15] You, X.C., Zhuang, Z., Feng, Y.R., Huo, C.Y., Zhuang, C.J. Crack Arrest in a Rupturing Steel Gas Pipelines. International Journal of Fracture. 123 (2003), pp.1-14.

DOI: 10.1023/b:frac.0000005791.79914.82

Google Scholar