Characteristics of Nanosize Sn Powder Prepared by Spark Processing


Article Preview

The spark processing of metallic Sn yields a powder, which is a mixture of nanosize Sn and crystalline SnO2. This paper reports the characteristics of nanosize Sn powders. Scanning tunneling microscopy (STM) and transmission electron microscopy (TEM) studies reveal an existence of spherical shaped nanocrystals ranging from 2 to 5 nm in size. In contrast the measured surface area of spark processed Sn (sp-Sn) powders by BET is 27.7 m2/g and calculated average size of sp- Sn is about 31 nm, which is close to one order of magnitude larger than the observed size. Further, the characteristics of sp-Sn powders are studied by Raman, and differential thermal analysis (DTA).



Key Engineering Materials (Volumes 326-328)

Edited by:

Soon-Bok Lee and Yun-Jae Kim




S. S. Chang et al., "Characteristics of Nanosize Sn Powder Prepared by Spark Processing", Key Engineering Materials, Vols. 326-328, pp. 397-400, 2006

Online since:

December 2006




[1] R. E. Hummel and S. -S. Chang, Appl. Phys. Lett. 61 (1962) (1965).

[2] M. H. Ludwig, R. E. Hummel, S. -S. Chang, J. Vac. Sci. Technol. B 12 (1994) 3023.

[3] S. -S. Chang, G. J. Choi, H. J. Park, M. E. Stora, R. E. Hummel, Mater. Sci. and Eng B., 83 (2001) 29.

[4] S. -S. Chang, Mater. Sci. and Eng. B 106 (2004) 56.

[5] S. -S. Chang, W. Gao, Mater. Sci. & Eng. B 85 (2001) 1.

[6] S. -S. Chang, A. Sakai, Mater. Lett. 58 (2004) 1212.

[7] S. -S. Chang, and D. K. Park, Mater. Sci. and Eng. B 95 (2002) 55.

[8] Drevillon, S. Kumar, P. R. Carbarrocas, J. M. Siefert, Appl. Phys. Lett. 54 (1989) (2088).

[9] A. Lousa, S. Gimeno, J. Marti, Vacuum 45 (1994) 1143.

[10] A. Tsunashima, H. Yoshimizu, K. Kodaira, S. Shimada, T. Matsushita, J. Mater. Sci. 21 (1986) 2731.

[11] S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B 101 (1997) 4490.

[12] Y. Tachibana, K. Hara, S., Takano, K. Sayama, H. Arkawa, Chem. Phys. Lett. 364 (2002) 297.

[13] D. Wang, S. Wen, J. Chen, S. Zhang, F. Li, Phys. Rev. B 49 (1994) 14282.

[14] F. Gu, S. F., Wang, M. K. Lu, X. F. Cheng, S. W. Liu, G. J. Zhou, D. Xu, D. R. Yuan, J. Cryst. Growth 262 (2004) 182.

[15] J. Jeong, S. -P. Choi, C. I. Chang, D. C. Shin, J. S. Park, B. -T. Lee, Y. -J. Park, H. -J. Song, Solid State Commun. 127 (2003) 595.

[16] S. P. S. Porto, P. A. Fleury, T. C. Damen, Phys. Rev. 154 (1967) 522.

[17] M. Ristic, M. Ivanda, S. Popovic, S. Music, J. Non-Crystalline Sol. 303 (2002) 270.

[18] K. N. Yu, Y. Xiong, Y. Liu Liu, C. Xiong, Phys. Rev. B 55 (1997) 2666.

[19] A. Asari, T. Sato, J. Phys. Soc. Jpn. 66 (1997) 1360.

[20] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, S. S. Xie, Solid State Commum. 130 (2004) 89.

[21] S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang, Appl. Phys. A 76 (2003) 287.

[22] I. H. Cambell, P. M Fauchet, Solid State Commun. 58 (1986) 739.