Characteristics of Nanosize Sn Powder Prepared by Spark Processing

Article Preview

Abstract:

The spark processing of metallic Sn yields a powder, which is a mixture of nanosize Sn and crystalline SnO2. This paper reports the characteristics of nanosize Sn powders. Scanning tunneling microscopy (STM) and transmission electron microscopy (TEM) studies reveal an existence of spherical shaped nanocrystals ranging from 2 to 5 nm in size. In contrast the measured surface area of spark processed Sn (sp-Sn) powders by BET is 27.7 m2/g and calculated average size of sp- Sn is about 31 nm, which is close to one order of magnitude larger than the observed size. Further, the characteristics of sp-Sn powders are studied by Raman, and differential thermal analysis (DTA).

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 326-328)

Pages:

397-400

Citation:

Online since:

December 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. E. Hummel and S. -S. Chang, Appl. Phys. Lett. 61 (1962) (1965).

Google Scholar

[2] M. H. Ludwig, R. E. Hummel, S. -S. Chang, J. Vac. Sci. Technol. B 12 (1994) 3023.

Google Scholar

[3] S. -S. Chang, G. J. Choi, H. J. Park, M. E. Stora, R. E. Hummel, Mater. Sci. and Eng B., 83 (2001) 29.

Google Scholar

[4] S. -S. Chang, Mater. Sci. and Eng. B 106 (2004) 56.

Google Scholar

[5] S. -S. Chang, W. Gao, Mater. Sci. & Eng. B 85 (2001) 1.

Google Scholar

[6] S. -S. Chang, A. Sakai, Mater. Lett. 58 (2004) 1212.

Google Scholar

[7] S. -S. Chang, and D. K. Park, Mater. Sci. and Eng. B 95 (2002) 55.

Google Scholar

[8] Drevillon, S. Kumar, P. R. Carbarrocas, J. M. Siefert, Appl. Phys. Lett. 54 (1989) (2088).

Google Scholar

[9] A. Lousa, S. Gimeno, J. Marti, Vacuum 45 (1994) 1143.

Google Scholar

[10] A. Tsunashima, H. Yoshimizu, K. Kodaira, S. Shimada, T. Matsushita, J. Mater. Sci. 21 (1986) 2731.

Google Scholar

[11] S. Ferrere, A. Zaban, B. A. Gregg, J. Phys. Chem. B 101 (1997) 4490.

Google Scholar

[12] Y. Tachibana, K. Hara, S., Takano, K. Sayama, H. Arkawa, Chem. Phys. Lett. 364 (2002) 297.

Google Scholar

[13] D. Wang, S. Wen, J. Chen, S. Zhang, F. Li, Phys. Rev. B 49 (1994) 14282.

Google Scholar

[14] F. Gu, S. F., Wang, M. K. Lu, X. F. Cheng, S. W. Liu, G. J. Zhou, D. Xu, D. R. Yuan, J. Cryst. Growth 262 (2004) 182.

Google Scholar

[15] J. Jeong, S. -P. Choi, C. I. Chang, D. C. Shin, J. S. Park, B. -T. Lee, Y. -J. Park, H. -J. Song, Solid State Commun. 127 (2003) 595.

Google Scholar

[16] S. P. S. Porto, P. A. Fleury, T. C. Damen, Phys. Rev. 154 (1967) 522.

Google Scholar

[17] M. Ristic, M. Ivanda, S. Popovic, S. Music, J. Non-Crystalline Sol. 303 (2002) 270.

Google Scholar

[18] K. N. Yu, Y. Xiong, Y. Liu Liu, C. Xiong, Phys. Rev. B 55 (1997) 2666.

Google Scholar

[19] A. Asari, T. Sato, J. Phys. Soc. Jpn. 66 (1997) 1360.

Google Scholar

[20] J. X. Wang, D. F. Liu, X. Q. Yan, H. J. Yuan, L. J. Ci, Z. P. Zhou, Y. Gao, L. Song, L. F. Liu, W. Y. Zhou, G. Wang, S. S. Xie, Solid State Commum. 130 (2004) 89.

DOI: 10.1016/j.ssc.2004.01.003

Google Scholar

[21] S. H. Sun, G. W. Meng, Y. W. Wang, T. Gao, M. G. Zhang, Y. T. Tian, X. S. Peng, L. D. Zhang, Appl. Phys. A 76 (2003) 287.

Google Scholar

[22] I. H. Cambell, P. M Fauchet, Solid State Commun. 58 (1986) 739.

Google Scholar