Selective Laser Sintering of Tissue Engineering Scaffolds Using Poly(L-Lactide) Microspheres

Abstract:

Article Preview

This paper reports a study on the modification of a commercial selective laser sintering (SLS) machine for the fabrication of tissue engineering scaffolds from small quantities of poly(L-lactide) (PLLA) microspheres. A miniature build platform was designed, fabricated and installed in the build cylinder of a Sinterstation 2000 system. Porous scaffolds in the form of rectangular prism, 12.7×12.7×25.4 mm3, with interconnected square and round channels were designed using SolidWorks. For initial trials, DuraFormTM polyamide powder was used to build scaffolds with a designed porosity of ~70%. The actual porosity was found to be ~83%, which indicated that the sintered regions were not fully dense. PLLA microspheres in the size range of 5-30 μm were made using an oil-in-water emulsion solvent evaporation procedure and they were suitable for the SLS process. A porous scaffold was sintered from the PLLA microspheres with a laser power of 15W and a part bed temperature of 60oC. SEM examination showed that the PLLA microspheres were partially melted to form the scaffold. This study has demonstrated that it is feasible to build tissue engineering scaffolds from small amounts of biomaterials using a commercial SLS machine with suitable modifications.

Info:

Periodical:

Key Engineering Materials (Volumes 334-335)

Edited by:

J.K. Kim, D.Z. Wo, L.M. Zhou, H.T. Huang, K.T. Lau and M. Wang

Pages:

1225-1228

DOI:

10.4028/www.scientific.net/KEM.334-335.1225

Citation:

W. Y. Zhou et al., "Selective Laser Sintering of Tissue Engineering Scaffolds Using Poly(L-Lactide) Microspheres", Key Engineering Materials, Vols. 334-335, pp. 1225-1228, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.