Microstructure and In Vitro Bioactivities of HA/Ti Composites Prepared by Hot Isostatic Pressing

Article Preview

Abstract:

Hydroxyapatite (HA)/titanium (Ti) composites were successfully fabricated by hot isostatic pressing at 850°C. The microstructure of 7T2HB (70Ti+20HA+10Bioglass, Vol. %) composites were systematically investigated. The main constituents of the composites are hydroxyapatite and titanium. A simulated body fluid (SBF) with the same ion concentrations as those of human plasma and pH value of 7.4 is selected to evaluate the in vitro biological properties of the composites. After 2-week immersion in SBF, the bioactive apatite formed a very dense film on the surface of the composites. The dissolution of CaO and Ca-P compounds in SBF improves the growth of apatite on the surface of the composites.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 336-338)

Pages:

1715-1717

Citation:

Online since:

April 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. C. Elliott, P. E. Mackie, and R. A. Young: Science Vol 180 (1973) p.1055.

Google Scholar

[2] L. Hong, H. C. Xu, and K. De Groot: J. Biomed Mater. Res. Vol 26 (1992) p.7.

Google Scholar

[3] J. T. Edwards, J. B. Brunski, and H. W. Higuchi : J. Biomed Mater. Res. Vol 36 (1997) p.454.

Google Scholar

[4] K. E. Healy and P. Ducheyne: J. Biomed Mater. Res. Vol 26 (1992) p.319.

Google Scholar

[5] A. Nanci, J. D. Wuest, L. Peru, P. Brunet, V. Sharma, S. Zalzal, and M. D. McKee: J. Biomed Mater. Res. Vol 40 (1998) p.324.

DOI: 10.1002/(sici)1097-4636(199805)40:2<324::aid-jbm18>3.0.co;2-l

Google Scholar

[6] X. B. Zheng, M. H. Hang, and C. X. Ding: Biomaterials Vol 21 (2000) p.841.

Google Scholar

[7] L. L. Hench: J. Am. Ceram Soc. Vol 81 (1998) p.1705.

Google Scholar

[8] Jansen J, J. P. C. M. Vande Waerden, J. G. C. Wolke, and K. De Groot: J. Biomed Mater. Res. Vol 25 (1991) p.97.

Google Scholar

[9] P. Ducheyne and G. W. Hastings: Metal and Ceramic Biomaterials. In: Strength and surface, vol. II. Boca Raton: CRC Press (1984) p.144.

Google Scholar

[10] C. Q. Ning: Mechanical Properties and Biological Behavior of Ti/HA Biocomposites (Ph.D. Thesis, P.R. China 2001).

Google Scholar

[11] C. Ohtsuki, T. Kokubo, and T. Yamamuro: J. Non-Cryst. Solids. Vol 143 (1992) p.84.

Google Scholar

[12] C. Q. Ning and Y. Zhou: Biomaterials Vol 25 (2004), p.3379.

Google Scholar

[13] C. Q. Ning and Y. Zhou: Biomaterials Vol 23 (2002), p.2909 Energy (keV) Energy (keV) Fig. 4. EDXA spectra on the surfaces of the composite after various immersion times: (a) 1 day (b) 14 days.

Google Scholar