Peak and Average Temperatures in Adiabatic Shear Band for Thermo-Viscoplastic Metal Materials

Abstract:

Article Preview

Gradient-dependent plasticity considering the microstructural effect is introduced into Johnson-Cook model to calculate the nonuniform temperature distribution in adiabatic shear band (ASB) and the evolutions of average and peak temperatures in ASB. Effects of initial static yield stress, strain-hardening coefficient, strain-hardening exponent, strain-rate parameter and thermal-softening parameter are numerically investigated. The calculated peak temperature in ASB considering both the plastic work and the microstructural effect is always greater than the average temperature calculated only using the plastic work. For much lower flow shear stress, the peak temperature approaches two times the average temperature. The occurrence of phase transformation in ASB is easier in metal material with higher initial static yield stress, strain-hardening coefficient, strain-rate parameter and thermal-softening parameter. At much lower flow shear stress or much higher average plastic shear strain, the phase transformation occurs more easily in material with a lower strain-hardening exponent. Traditional elastoplastic theory without the microstructural effect underestimates the peak temperature in ASB so that the experimentally observed phase transformations cannot be explained.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

133-136

DOI:

10.4028/www.scientific.net/KEM.345-346.133

Citation:

X.B. Wang "Peak and Average Temperatures in Adiabatic Shear Band for Thermo-Viscoplastic Metal Materials ", Key Engineering Materials, Vols. 345-346, pp. 133-136, 2007

Online since:

August 2007

Authors:

Export:

Price:

$35.00

In order to see related information, you need to Login.