Two Methods for Determination of Fatigue Crack Propagation Limit Curves and their Application for Different Materials

Abstract:

Article Preview

There are different documents containing fatigue crack propagation limit or design curves and rules for the prediction of crack growth. The research work aimed to characterise the fatigue crack propagation resistance of different materials using limit curves and determination of limit curves under different loading conditions, based on statistical analysis of test results and the Paris-Erdogan law. With the help of the characteristic values of threshold stress intensity factor range (Kth), two constants of Paris-Erdogan law (C and n), fatigue fracture toughness (Kfc) or fracture toughness (KIc) two reliable method can be proposed. The limit curves calculated by both methods represent a compromise of rational risk (not the most disadvantageous case is considered) and striving for safety (uncertainty is known).

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

395-398

Citation:

J. Lukács, "Two Methods for Determination of Fatigue Crack Propagation Limit Curves and their Application for Different Materials ", Key Engineering Materials, Vols. 345-346, pp. 395-398, 2007

Online since:

August 2007

Authors:

Export:

Price:

$38.00

[1] R.J. Allen, G.S. Booth and T. Jutla: Fat. Fract. Eng. Mater. Struct. Vol. 11 (1988), p.45.

[2] R.J. Allen, G.S. Booth and T. Jutla: Fat. Fract. Eng. Mater. Struct. Vol. 11 (1988), p.71.

[3] A. Ohta et al.: Trans. Jap. Weld. Soc. Vol. 20 (1989), p.17.

[4] Merkblatt DVS 2401 Teil 1 (Oktober 1982).

[5] Det norske Veritas, Classification Notes, Note No. 30. 2 (August 1984).

[6] BS 7910 (1999).

[7] Merkblatt DVS 2401 Teil 2 (April 1989).

[8] P. Paris and F. Erdogan: Journ. of Bas. Engng., Trans. ASME. (1963), p.528.

[9] J. Lukács: Reliability of Cyclic Loaded Welded Joints Having Cracks, CSc dissertation, University of Miskolc, Miskolc and Technical University of Budapest, Budapest (1992). In Hungarian.

[10] J. Lukács: Publ. Univ. Miskolc, Series C. Mech. Engng. Vol. 46 (1996) p.77.

[11] B.E. Cornelissen, et al.: Acta Metall. Mater. Vol. 42 (1994) p.3055.

[12] Y. Bokoi, Y. Shiraishi and Y. Higo: Proceedings of The Sixth International Fatigue Congress, Pergamon, Elsevier (1996).

[13] R.W. Hertzberg, J.A. Manson and W.C. Wu: Progress in Flaw Growth and Fracture Toughness Testing, ASTM STP 536, ASTM (1993).

[14] A. Sugeta, M. Jono and A. Koyoma: Proceedings of The Sixth International Fatigue Congress, Pergamon, Elsevier (1996).

[15] M. Hojo et al.: Proceedings of a Japan-US Joint Seminar on Advanced Materials for Severe Service Applications, Elsevier (1986).

[16] M. Hojo et al.: Eng. Fract. Mech. Vol. 49 (1994) p.35.

[17] J.F. Mandell: Fatigue of Composite Materials: Fatigue Behaviour of Short Fiber Composite Materials, Elsevier (1990).

[18] ASTM E 647 (1988).

[19] D.B. Owen: Handbook of statistical tables (Vychislitel'nyjj Centr AN SSSR, Moskva 1973). In Russian.