[1]
U. Zerbst, R.A. Ainsworth and K.-H. Schwalbe: Int. J. Pressure Vessels & Piping Vol. 77 (2000), p.855
Google Scholar
[2]
K.-H. Schwalbe, Y.-J. Kim, S. Hao, A. Cornec and M. Kocak, in: EFAM ETM-MM 96, Report GKSS 97/E/9, GKSS, Geesthacht (1997)
Google Scholar
[3]
A. G. Miller: Int. J. Pressure Vessels & Piping Vol. 32 (1988), p.197.
Google Scholar
[4]
S. Alexandrov and J. Gracio: Fatigue Fract. Engng Mater. Struct. Vol. 26 (2003), p.399.
Google Scholar
[5]
S. Alexandrov and N. Kontchakova: Mater. Sci. Engng - A Vol. 387-389 (2004), p.395.
Google Scholar
[6]
S. Alexandrov and N. Kontchakova: Engng Fract. Mech. Vol. 72 (2005), p.151.
Google Scholar
[7]
D.C. Drucker, W. Prager and N.J. Greenberg: Quart. Appl. Math. Vol. 9 (1952), p.381.
Google Scholar
[8]
S. Alexandrov and O. Richmond: Int. J. Solids Struct. Vol. 37 (2000), p.669.
Google Scholar
[9]
S. Alexandrov and O. Richmond: Int J. Non-Linear Mech. Vol. 36 (2001), p.1.
Google Scholar
[10]
J.F. Collins and S.A. Meguid: Trans. ASME J. Appl. Mech. Vol. 44 (1977), p.271.
Google Scholar
[11]
R. Hill: The Mathematical Theory of Plasticity (Clarendon Press, UK 1950). Fig.2. Effect of the plastic anisotropy on the dimensionless limit load.
Google Scholar
[12]
S. Alexandrov and R. Goldstein: Fatigue Fract. Engng Mater. Struct. Vol. 22 (1999), p.975.
Google Scholar
[13]
S. Alexandrov, K.-H. Chung and K. Chung: Fatigue Fract. Engng Mater. Struct. (in press).
Google Scholar