Microstructure Reconstruction and Numerical Simulation of Deformation in Particle-Reinforced Composites

Article Preview

Abstract:

A new methodology of computer simulation is proposed to perform finite element (FE) calculations of uniaxial tensile deformation on the three-dimensional (3D) complex microstructures, through its application to the microstructure of aluminum matrix containing randomly distributed and oriented SiC particles of highly variable and angular geometry. Compared with the simplified microstructure model, the complex microstructure model shows significant differences in terms of micromechanical fields and macroscopic uniaxial deformation. The results reveal that a quantitative and convenient reconstruction of microstructure of particulate composites is crucial for both the prediction and design of material properties.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Pages:

567-570

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Hill: J. Mech. Phys. Solids Vol. 13 (1965), p.213.

Google Scholar

[2] C. González, J. LLorca: J. Mech. Phys. Solids Vol. 48 (2000), p.675.

Google Scholar

[3] P. Ponte Castaneda: J. Mech. Phys. Solids Vol. 50 (2002), p.737.

Google Scholar

[4] M. Dong and S. Schmauder: Acta Mater. Vol. 44 (1996), p.2465.

Google Scholar

[5] W. Han, A. Eckschlager and H.J. Böhm: Compos. Sci. Technol. Vol. 61 (2001), p.1581.

Google Scholar

[6] J. Segurado and J. Llorca: J. Mech. Phys. Solids Vol. 50 (2002), p.2107.

Google Scholar

[7] C. González, J. Segurado and J. Llorca: J. Mech. Phys. Solids Vol. 52 (2004), p.1573.

Google Scholar

[8] Z. Shan and A.M. Gokhale: Acta Mater. Vol. 49 (2001), p. (2001).

Google Scholar

[9] H. Singh, A.M. Gokhale, Y. Mao, J.E. Spowart: Acta Mater. Vol. 54 (2006), p.2131.

Google Scholar

[10] H. Kumar, C.L. Briant and W.A. Curtin: Mech. Mater. Vol. 38 (2006), p.818.

Google Scholar

[11] N. Chawla, V.V. Ganesh and B. Wunsch: Scripta Mater. Vol. 51 (2004), p.161.

Google Scholar

[12] N. Chawla, R.S. Sidhu and V.V. Ganesh: Acta Mater. Vol. 54 (2006), p.1541.

Google Scholar

[13] J.Y. Buffière, E. Maire and P. Cloetens et al.: Acta Mater. Vol. 47 (1999), p.1613.

Google Scholar

[14] L. Babout, E. Maire, J. -Y. Buffière, R. Fougères: Acta Mater. Vol. 49 (2001), p. (2055).

Google Scholar

[15] A. Borbély, F.F. Csikor and S. Zabler et al.: Mater. Sci. Eng. A Vol. 367 (2004), p.40.

Google Scholar

[16] B. Widom: J. Chem. Phys. Vol. 44 (1966), p.3888.

Google Scholar

[17] J. Feder: J. Theor. Biol. Vol. 87 (1980), p.237.

Google Scholar

[18] J. Segurado, J. Llorca and C. González: Scripta Mater. Vol. 46 (2002).

Google Scholar