A Novel Approach of Homogenous Inorganic/Organic Composite through In Situ Precipitation in Gelatine/Poly(Acrylic Acid) Gel

Article Preview

Abstract:

A new in situ precipitation technique was developed to promote high-affinity nucleation and growth of calcium phosphate in the polymer hydrogel. Gelatine/poly(acrylic acid)/hydroxyapatite (HA) composite has been prepared using template-driven reaction. Nano-sized hydroxyapatite particles were distributed within organic template homogenously, furthermore, inorganic particles were fine and uniform. During the composite process, 3D network of organic matrices and homogenous distributed nucleation sites played an important role in the superfine interaction of HA and hydrogel. This method provides an efficient approach toward inorganic/organic nanocomposites with high-uniformity decentralization for biomimetic replant applications. This paper discussed the mechanism of the reaction, and the concept of in situ precipitation in gel was brought forward.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Pages:

499-502

Citation:

Online since:

November 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Baeuerlein: Biomineralization: From Biology to Biotechnology and Medical Application (Wiley-VCH, Weinheim 2000).

Google Scholar

[2] O. Grassmann, P. Löbmann: Biomaterials 25 (2004), p.277.

Google Scholar

[3] Y. Han, K. Xu, G. Montay, T. Fu, J. Lu: J Biomed Mater Res 60 (2002), p.511.

Google Scholar

[4] D. Ogomi, T. Serizawa, M. Akashi: J Biomed Mater Res Part A 67A (2003), p.1360.

Google Scholar

[5] T. Taguchi, A. Kishida, M. Akashi: Chemistry Letters 27 (1998), p.711.

Google Scholar

[6] T. Taguchi, Y. Muraoka, H. Matsuyama, A. Kishida, M. Akashi: Biomaterials 22 (2001), p.53.

Google Scholar

[7] W. Tachaboonyakiat, T. Serizawa, M. Akashi: Polymer Journal 33 (2001), p.177.

Google Scholar

[8] M. Kikuchi, T. Ikoma, S. Itoh, H.N. Matsumoto: Composites Science and Technology 64(2004) p.819.

Google Scholar

[9] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, J. Tanaka: Biomaterials 22 (2001), p.1705.

Google Scholar

[10] H. Imai, S. Tatara, K. Furuichi, Y. Oaki: Chemical Communications 15 (2003), p. (1952).

Google Scholar

[11] L.A. Estroff: Organic and Biomolecular Chemistry 2 (2004), p.137.

Google Scholar

[12] J. Song, E. Saiz, C.R. Bertozzi: Journal of the American Chemical Society 125 (2003), p.1236.

Google Scholar

[13] R.Y. Zhang, P.X. Ma: J Biomed Mater Res 45 (1999), p.285.

Google Scholar

[14] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, J. Tanaka: Biomaterials 22 (2001), p.1705.

Google Scholar

[15] J. Bradt, M. Mertig, A. Teresiak, W. Pompe: Chem Mater 11 (1999), p.2694.

Google Scholar

[16] S.G. Zhang: Biotechnology Advances 20 (2002), p.321.

Google Scholar

[17] X.Y. Shen, H. Tong, Z.H. Zhu, P. Wan, J.M. Hu: Materials Letters 61 (2007), p.629.

Google Scholar

[18] Y. Yin, F. Zhou, X. Song, K. Yao: J Appl Polym Sci 77 (2000), p.2929.

Google Scholar

[19] W. Zhang, S.S. Liao, F.Z. Cui: Chem Mater 15 (2003), p.3221.

Google Scholar

[20] S. Huang, F. Zhou, W. Zhu, B. Huang, Z. Li: J Appl Polym Sci 101 (2006), p.1842.

Google Scholar

[21] H. Tong, W.T. Ma, L.L. Wang, P. Wan, J.M. Hu: Biomaterials 25 (2004), p.3923.

Google Scholar