A Novel Approach of Homogenous Inorganic/Organic Composite through In Situ Precipitation in Gelatine/Poly(Acrylic Acid) Gel

Abstract:

Article Preview

A new in situ precipitation technique was developed to promote high-affinity nucleation and growth of calcium phosphate in the polymer hydrogel. Gelatine/poly(acrylic acid)/hydroxyapatite (HA) composite has been prepared using template-driven reaction. Nano-sized hydroxyapatite particles were distributed within organic template homogenously, furthermore, inorganic particles were fine and uniform. During the composite process, 3D network of organic matrices and homogenous distributed nucleation sites played an important role in the superfine interaction of HA and hydrogel. This method provides an efficient approach toward inorganic/organic nanocomposites with high-uniformity decentralization for biomimetic replant applications. This paper discussed the mechanism of the reaction, and the concept of in situ precipitation in gel was brought forward.

Info:

Periodical:

Key Engineering Materials (Volumes 361-363)

Main Theme:

Edited by:

Guy Daculsi and Pierre Layrolle

Pages:

499-502

Citation:

X. A. Cai et al., "A Novel Approach of Homogenous Inorganic/Organic Composite through In Situ Precipitation in Gelatine/Poly(Acrylic Acid) Gel", Key Engineering Materials, Vols. 361-363, pp. 499-502, 2008

Online since:

November 2007

Export:

Price:

$38.00

[1] E. Baeuerlein: Biomineralization: From Biology to Biotechnology and Medical Application (Wiley-VCH, Weinheim 2000).

[2] O. Grassmann, P. Löbmann: Biomaterials 25 (2004), p.277.

[3] Y. Han, K. Xu, G. Montay, T. Fu, J. Lu: J Biomed Mater Res 60 (2002), p.511.

[4] D. Ogomi, T. Serizawa, M. Akashi: J Biomed Mater Res Part A 67A (2003), p.1360.

[5] T. Taguchi, A. Kishida, M. Akashi: Chemistry Letters 27 (1998), p.711.

[6] T. Taguchi, Y. Muraoka, H. Matsuyama, A. Kishida, M. Akashi: Biomaterials 22 (2001), p.53.

[7] W. Tachaboonyakiat, T. Serizawa, M. Akashi: Polymer Journal 33 (2001), p.177.

[8] M. Kikuchi, T. Ikoma, S. Itoh, H.N. Matsumoto: Composites Science and Technology 64(2004) p.819.

[9] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, J. Tanaka: Biomaterials 22 (2001), p.1705.

[10] H. Imai, S. Tatara, K. Furuichi, Y. Oaki: Chemical Communications 15 (2003), p. (1952).

[11] L.A. Estroff: Organic and Biomolecular Chemistry 2 (2004), p.137.

[12] J. Song, E. Saiz, C.R. Bertozzi: Journal of the American Chemical Society 125 (2003), p.1236.

[13] R.Y. Zhang, P.X. Ma: J Biomed Mater Res 45 (1999), p.285.

[14] M. Kikuchi, S. Itoh, S. Ichinose, K. Shinomiya, J. Tanaka: Biomaterials 22 (2001), p.1705.

[15] J. Bradt, M. Mertig, A. Teresiak, W. Pompe: Chem Mater 11 (1999), p.2694.

[16] S.G. Zhang: Biotechnology Advances 20 (2002), p.321.

[17] X.Y. Shen, H. Tong, Z.H. Zhu, P. Wan, J.M. Hu: Materials Letters 61 (2007), p.629.

[18] Y. Yin, F. Zhou, X. Song, K. Yao: J Appl Polym Sci 77 (2000), p.2929.

[19] W. Zhang, S.S. Liao, F.Z. Cui: Chem Mater 15 (2003), p.3221.

[20] S. Huang, F. Zhou, W. Zhu, B. Huang, Z. Li: J Appl Polym Sci 101 (2006), p.1842.

[21] H. Tong, W.T. Ma, L.L. Wang, P. Wan, J.M. Hu: Biomaterials 25 (2004), p.3923.

Fetching data from Crossref.
This may take some time to load.