Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators

Abstract:

Article Preview

This paper deals with the fatigue behaviour of NiTiCu shape memory alloy (SMA) wire actuators on thermo-mechanical cycling (TMC). Cyclic loading in SMA actuators is invariably associated with both functional and structural fatigue. The characteristic of the actuators such as austenite (hot shape) remnant deformation and recovery strain undergo changes upon TMC. These in turn result in continuous change in strain response (functional fatigue) during application. It has been shown that the functional fatigue can be minimized by adopting TMC at higher stress than that of the working stress prior to the application. On the other hand, failure of the actuators by fracture (structural fatigue) due to cyclic stress/strain is inevitable. Study shows that the fatigue life of the actuators is strongly dependent on the type of loading and the temperature range of operation. This has been explained in terms of damage accumulation, crack initiation and fracture behaviour.

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Edited by:

Dr. T. S. Srivatsan, FASM, FASME

Pages:

301-316

DOI:

10.4028/www.scientific.net/KEM.378-379.301

Citation:

S.K. Bhaumik et al., "Understanding the Fatigue Behaviour of NiTiCu Shape Memory Alloy Wire Thermal Actuators", Key Engineering Materials, Vols. 378-379, pp. 301-316, 2008

Online since:

March 2008

Export:

Price:

$35.00

[1] T.W. Duerig, A. Pelton and D. Stockel: Mater. Sci. Eng. Vol. A273-275 (1999), p.149.

[2] A.R. Pelton, S. M. Russell, J. DiCello: JOM Vol. 55 (2003), p.33.

[3] J.V. Humbeeck: Mater. Sci. Eng. Vol. A273-275 (1999), p.134.

[4] S.K. Wu and H.C. Lin: Mater. Chem. Phy. Vol. 64 (2000), p.81.

[5] J.V. Humbeeck: Mat. Res. Soc. Symp. Proc. Vol. 246 (1992), p.377.

[6] J.V. Humbeeck: J. Phys. IV. Vol. 1 (1991), p. C4-189.

[7] G. Eggeler, E. Hornbogen, Y. Yawny, A. Heckmann, M. Wagner: Mater. Sci. Eng. A Vol. 378 (2004), p.24.

[8] J. Perkins and R.O. Sponholz: Metall. Trans. A. Vol. 15A (1984), p.313.

[9] J.L. McNichols, Jr., P.C. Brooks, J.S. Cory: J. Appl. Phys. Vol. 52 (1981), p.7442.

[10] D.C. Lagoudas, C. Li, D.A. Miller, L. Rong: Proc. of SPIE. Vol. 3992 (2000), p.420.

[11] O.W. Bertacchini, D.C. Lagoudas, E. Patoor, in: Smart structure and Materials 2003: Active Materials: Behavior and Mechanics, edited by D.C. Lagoudas in Conf. Proc. of SPIE, Vol. 5053 (2003), p.612.

DOI: 10.1117/12.508207

[12] Y. Liu, J. Laeng, T.V. Chin, T.H. Nam: Mater. Sci. Eng. A Vol. 435-436 (2006), p.251.

[13] K.N. Melton, O. Mercier: Acta. Met. Mater. Sci. Eng. Vol. 27 (1979), p.137.

[14] R.M. Tabanli, N.K. Simha, B.T. Berg: Mater. Sci. Eng. A Vol. A273-275 (1999), p.644.

[15] S. Miyazaki, K. Mizukoshi, T. Ueki, T. Sakuma, Y. Liu: Mater. Sci. Eng. A Vol. 273-275 (1999), p.658.

[16] H. Tobushi, T. Hachisuka, S. Yamada, P. Lin: Mech. Mater. Vol. 26 (1997), p.35.

[17] R. Matsui, H. Tobushi, F. Furuichi, H. Horikawa: Trans. AMIE. Vol. 126 (2004), p.384.

[18] Y. Kishi, Z. Yazima, K. Shimizu, K. Morii: Mater. Sci. Eng. A Vol. 273-275 (1999), p.654.

[19] K. Gall, H.J. Maier: Acta mater. Vol. 50 (2002), p.4643.

[20] E. Hornbogen, A. Heckmann: Mat. -wiss. U. Werkstofftech. Vol. 34 (2003), p.464.

[21] S. Miyazaki, in: Engineering aspects of shape memory alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann Ltd., London (1990), p.394.

[22] Y. Suzuki, H. Tamura, in: Engineering aspects of shape memory alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann Ltd., London (1990), p.256.

[23] K.A. Tsoi, J. Schrooten, R. Stalmans: Mater. Sci. Eng. A Vol. 368 (2004), p.286.

[24] D.A. Miller, D.C. Lagoudas: Smart Mater. Struct. Vol. 9 (2000), p.640.

[25] Y. Liu, Z. Xie, J.V. Humbeeck, L. Delaey, Scripta Mater. Vol. 41 (1999), p.1273.

[26] X. Jiang, M. Hida, Y. Takemoto, A. Sakakibara, H. Yasuda, H. Mori, Mater. Sci. Eng., Vol. A238 (1997), p.303.

[27] M. Wagner, T. Sawaguchi, G. Kaustrater, D. Hoffken, G. Eggeler: Mater. Sci. Eng. A Vol. 378 (2004), p.105.

[28] C.N. Saikrishna, K. Venkata Ramaiah, S.K. Bhaumik: Mater. Sci. Eng. A Vol. 428 (2006), p.217.

[29] T.H. Nam, T. Saburi, Y. Kawamura, K. Shimizu: Mater. Trans. JIM. Vol. 31 (1990), p.262.

[30] R. Stalmans, J.V. Humbeeck, L. Delaey: J. Phys. IV Vol. 1 (1991), p. C4-403.

[31] L. Rong, D.A. Miller, D.C. Lagoudas: Metall. Mater. Trans. A Vol. 32A (2001), p.2689.

[32] Y. Liu, Z. Xie, J.V. Humbeeck: Mater. Sci. Eng. Vol. A273-275 (1999), p.673.

[33] T.H. Nam, T. Saburi, K. Shimizu: Mater. Trans. JIM. Vol. 33 (1991), p.814.

[34] R. Stalmans, J.V. Humbeeck, L. Delaey, Acta Metall. Mater. Vol. 40 (1992), p.501.

[35] J. Perkins, G.R. Edwards, C.R. Such, J.M. Johnson and R.R. Allen in: Shape memory effects in alloys edited by J. Perkin, Plenum press, New York (1975), p.273.

[36] J.V. Humbeeck, R. Stalmans, M. Chandrasekaran, L Delaey in: Engineering aspects of shape memory alloys, edited by T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman, Butterworth-Heinemann Ltd., London (1990), p.96.

DOI: 10.1016/b978-0-7506-1009-4.50012-3

[37] Y. Zheng, J. Schrooten, L. Cui, J.V. Humbeeck: Acta Mater. Vol. 51 (2003), p.5467.

[38] K. Wada, Y. Liu: J. Alloy Compd. (2007), in press.

[39] Y. Liu, D. Favier: Acta Mater. Vol. 48 (2000), p.3489.

[40] E. Hornbogen: J. Mater. Sci. Vol. 38 (2003), p.1.

[41] K. Otsuka, X. Ren: Mater. Sci. Eng. Vol. A312 (2001), p.207.

[42] E. Hornbogen: J. Mater. Sci. Vol. 39 (2004), p.385.

In order to see related information, you need to Login.