Direct Comparisons of the Fatigue Behavior of Bulk-Metallic Glasses and Crystalline Alloys

Article Preview

Abstract:

Recent research works on bulk-metallic glasses (BMGs) have opened a window to create a new generation of structural materials for applications. Although the mechanical behavior of BMGs is being studied widely, the fatigue characteristics are poorly understood. The uniaxial tension-tension high-cycle fatigue (HCF) studies were performed on zirconium (Zr)-based bulk-metallic glasses (BMGs): Zr50Cu40Al10, Zr50Cu30Al10Ni10, Zr50Cu37Al10Pd3, and Zr41.2Cu12.5Ni10Ti13.8Be22.5, in atomic percent. The HCF experiments were conducted using an electrohydraulic machine at a frequency of 10 Hz with a R ratio of 0.1, where R = σmin./σmax., where σmin. and σmax. are the applied minimum and maximum stresses, respectively. The fatigue-endurance limit of Zr50Cu37Al10Pd3 was significantly greater than those of Zr50Cu40Al10, Zr50Cu30Al10Ni10, and Zr41.2Ti13.8Cu12.5Ni10Be22.5. In order to compare the fatigue property with the crystalline alloys, the same HCF experiments were also performed on Ti-6-4, drill tool steel, and Al 7075. The fatigue lifetime of Zr-based BMGs is generally comparable to those of Ti-6-4 and drill-tool-steel crystalline alloys and is greater than that of Al 7075 alloy. The fracture morphology of BMGs indicates that fatigue-crack-propagation region included the distinct rough striations and the fine striations. The possible mechanism for the striation formation was proposed.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

329-338

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Klement, R.H. Willens, and P. Duwez: Nature Vol. 187 (1960), p.869.

Google Scholar

[2] A. Inoue and W. Zhang: Materials Transactions JIM Vol. 45 (2004), p.1210.

Google Scholar

[3] Z.P. Lu, C.T. Liu, J.R. Thompson, and W.D. Porter: Physical Review Letters Vol. 92 (2004), 245503.

Google Scholar

[4] A. Inoue, N. Nishiyama, and T. Matsuda: Materials Transactions JIM Vol. 37 (1996), p.181.

Google Scholar

[5] Y. He, G.M. Dougherty, G.J. Shiflet, S.J. Poon: Acta Metallurgica et Materialia Vol. 41 (1993), p.337.

DOI: 10.1016/0956-7151(93)90064-y

Google Scholar

[6] H. Choi-Yim, D.H. Xu, and W.L. Johnson: Applied Physics Letters Vol. 82 (2003), p.1030.

Google Scholar

[7] T. Zhang and A. Inoue: Materials Transactions JIM Vol. 43 (2002), p.708.

Google Scholar

[8] A. Inoue and T. Masumoto: Materials Science And Engineering A Vol. 173 (1993), p.1.

Google Scholar

[9] A. Inoue: Acta Mater Vol. 48 (2000), p.279.

Google Scholar

[10] J.F. Lofler: Intermetallics Vol. 11 (2003), p.529.

Google Scholar

[11] H. Li, C. Fan, K. Tao, H. Choo, and P. Liaw: Advanced Materials Vol. 18 (2006), p.752.

Google Scholar

[12] C. Fan, H. Li, L.J. Kecskes, K. Tao, H. Choo, P.K. Liaw, and C.T. Liu: Physical Review Letters Vol. 96 (2006), 145506.

Google Scholar

[13] W.L. Johnson: MRS Bulletin Vol. 10 (1999), p.42.

Google Scholar

[14] C.J. Gilbert, J.M. Lippmann, and R.O. Ritchie: Scripta Materialia Vol. 38 (1998), 537.

Google Scholar

[15] P.A. Hess, B.C. Menzel, and R.H. Dauskardt: Scripta Materialia Vol. 54 (2006), 355.

Google Scholar

[16] B.C. Menzel, R.H. Dauskardt: Acta Materialia Vol. 54 (2006), p.935.

Google Scholar

[17] G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, M.L. Benson, W. Yuan, W.H. Peter, L. Huang, M. Freels, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics Vol. 13 (2005), p.429.

DOI: 10.1016/j.intermet.2004.07.037

Google Scholar

[18] G.Y. Wang, P.K. Liaw, A. Peker, M. Freels, W.H. Peter, R.A. Buchanan, and C.R. Brooks: Intermetallics Vol. 14 (2006), p.1091.

DOI: 10.1016/j.intermet.2006.01.045

Google Scholar

[19] W.H. Peter, P.K. Liaw, R.A. Buchanan, C.T. Liu, C.R. Brooks, J.A. Horton, Jr., C.A. Carmichael, Jr., and J.L. Wright: Intermetallics Vol. 10 (2002), p.1125.

DOI: 10.1016/s0966-9795(02)00152-8

Google Scholar

[20] W.H. Peter, R.A. Buchanan, C.T. Liu, and P.K. Liaw: Journal of Non-Crystalline Solids Vol. 317 (2003), p.187.

Google Scholar

[21] G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics Vol. 12 (2004), p.885.

DOI: 10.1016/j.intermet.2004.02.043

Google Scholar

[22] G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels. Y. Yokoyama, M.L. Benson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics Vol. 12 (2004), p.1219.

DOI: 10.1016/j.intermet.2004.04.038

Google Scholar

[23] G.Y. Wang, P.K. Liaw, Y. Yokoyama, A. Peker, W.H. Peter, B. Yang, M. Freels, Z.Y. Zhang, V. Keppens, R. Hermann, R.A. Buchanan, C.T. Liu, and C.R. Brooks: Intermetallics Vol. 15 (2007), p.663.

DOI: 10.1016/j.intermet.2006.10.034

Google Scholar

[24] Y. Yokoyama, P.K. Liaw, M. Nishijima, K. Hiraga, R.A. Buchanan, and A. Inoue: Materials Transactions JIM Vol. 47 (2006), p.1286.

Google Scholar

[25] G.Y. Wang, P.K. Liaw, A. Smyth, M. Denda, A. Peker, M. Freels, R.A. Buchanan, and C.R. Brooks: Fatigue Characteristics of a Zr-Based Bulk Metallic Glass, Journal of Alloys and Compounds, Accepted.

Google Scholar

[26] Y. Yokoyama, A. Kobayashi, K. Fukaura, and A. Inoue: Materials Transactions JIM Vol. 43 (2002), p.571.

Google Scholar

[27] Y. Yokoyama, Y. Akeno, T. Yamasaki, P.K. Liaw, R.A. Buchanan, and A. Inoue: Materials Transactions JIM Vol. 46 (2005), p.2755.

Google Scholar

[28] W.H. Peter, G.Y. Wang, P.K. Liaw, R.A. Buchanan, C.T. Liu, M.L. Morrison, and C.R. Brooks: Key Engineering Materials Vols. 345-346 (2007), p.217.

Google Scholar

[29] G.Y. Wang, P.K. Liaw, Y. Yokoyama, M. Freels, R. A. Buchanan, A. Inoue, and C. R. Brooks: Journal of Materials Research Vol. 22 (2007), p.493.

Google Scholar

[30] C.T. Liu, M.F. Chisholm, and M.K. Miller: Intermetallics Vol. 10 (2002), p.1105.

Google Scholar