Mechanisms and Mechanics of Fatigue Crack Propagation in Zr-Based Bulk Metallic Glass

Article Preview

Abstract:

In the present study, the fatigue crack propagation tests of Zr-based metallic glass were conducted in laboratory air, and the fracture surface was observed to clarify the effects of loading frequency and the stress ratio. In spite of being brittle material, the metallic glass showed stable fatigue crack propagation behaviour, and the relationship between the crack propagation rate, da/dN, and the stress intensity range, K, can be divided into three regions as well as conventional crystalline metals. The crack propagation rate can be expressed as a function of the stress intensity range by Paris law in the middle region. The power in Paris law was 1.4, and it is considerably smaller than the value for conventional crystalline metals. The threshold stress intensity range, Kth, was 1.8 MPam1/2. The effects of the stress ratio and the loading frequency were not observed on the relationships, da/dN-K and da/dN-Keff. Then, the fatigue crack propagation of the metallic glass is cycle dependent in laboratory air.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 378-379)

Pages:

317-328

Citation:

Online since:

March 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ishida, H. Takeda, N. Nishiyama, K. Amiya, K. Kita, Y. Shimizu, D. Watanabe, E. Fukushima, Y. Saotome and A. Inoue: Materia Japan, Vol. 44 (2005), p.431.

DOI: 10.2320/materia.44.431

Google Scholar

[2] C.J. Gilbert, J.M. Lippmann and R.O. Ritchie: Scripta Materialia, Vol. 38 (1998), p.537.

Google Scholar

[3] G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels, Y. Yokoyama, M.L. Berson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu and C.R. Brooks: Intermatallics, Vol. 12, (2004), p.1219.

DOI: 10.1016/j.intermet.2004.04.038

Google Scholar

[4] G.Y. Wang, P.K. Liaw, A. Peker, B. Yang, M.L. Benson, Y. Yuan, W.H. Peter,L. Huang, M. Freels, R.A. Buchanan, C.T. Liu and C.R. Brooks: Intermetallics, Vol. 13 (2005), p.429.

DOI: 10.1016/j.intermet.2004.07.037

Google Scholar

[5] W.H. Peter, R.A. Buchanan, C.T. Liu and P.K. Liaw: J. Non-Crystalline Solids, Vol. 317 (2003), p.187.

Google Scholar

[6] Y. Yokoyama and K. Fukaura: Proc. 2002 Annual Meeting of JSME/MMD, No. 02-05 (2002), p.617.

Google Scholar

[7] K. Fujita: Metal, Vol. 75 (2005), p.34.

Google Scholar

[8] W.F. Deans and C.E. Richards: J. Test. Evalu., Vol. 7 (1979), p.147.

Google Scholar

[9] C. Masuda, K. Tanaka, S. Nishijima: Trans. Japan Soc. Mech. Eng., Ser. A, Vol. 46 (1980), p.247.

Google Scholar

[10] Y. Nakai, K. Tanaka, and R. Kawashima: J. Soc. Mat. Sci., Japan, Vol. 33 (1984), p.1045.

Google Scholar

[11] M. Jono, A. Sugeta, and M. Ohmachi: Trans. Japan Soc. Mech. Eng., Ser. A, Vol. 53 (1987), p. (1993).

Google Scholar

[12] D. Suh and R.H. Dauskardt: Scripta Materialia, Vol. 42 (2000), p.233.

Google Scholar

[13] K. Fujita, A. Inoue, and T. Zhang: Materials Trans., Vol. 42 (2001), p.1502.

Google Scholar

[14] C.J. Gilbert, V. Schroeder, and R.O. Ritchie: Metall. Mat. Trans., Vol. 30A (1999), p.1739.

Google Scholar

[15] K. Fujita, A. Inoue, and T. Zhang: Materials Trans., Vol. 41 (2000), p.1448.

Google Scholar

[16] V. Schroeder, C.J. Gilbert, and R.O. Ritchie: Scripta Materialia, Vol. 40 (1999), p.1057.

Google Scholar

[17] M. Kikukawa, M. Jono, Y. Kondo, T. Yamaki, K. Yamada: J. Soc. Mat. Sci., Japan, Vol. 29 (1980), p.155.

Google Scholar

[18] B. Cottlell, J.R. Rice: Int. J. Fracture: Vol. 16 (1980), p.155.

Google Scholar

[19] K. Fujita, A. Inoue, and T. Zhang: Scripta Materialia, Vol. 44 (2001), p.1629.

Google Scholar

[20] R.W. Hertzberg: Deformation and fracture of engineering materials Second Edition (John Wiley & Sons. Inc. 1983), p.536.

Google Scholar

[21] H. Kobayashi, H. Nakamura, and H. Nakazawa: Mechanics of Materials, edited by T. Mura, ASME AMD, Vol. 47 (1981), p.133.

Google Scholar

[22] S. Usami: Fatigue thresholds: Fundamentals and engineering applications (Engineering Materials Advisory Services Publ., England, 1982), p.205.

Google Scholar