Effect of Ductile and Brittle Phases on Deformation and Fracture Behaviour of Molybdenum and Niobium Silicide Based Composites

Article Preview

Abstract:

A comparative study on the microstructure-mechanical property relationships in the molybdenum and niobium silicide based composites has been carried out with emphasis on the role of the ductile and brittle phase constituents at ambient and elevated temperatures. The MoSi2, MoSi2-20 vol.% SiC and -Mo-Mo3Si-Mo5SiB2 composites have been prepared by powder metallurgy processing. Furthermore, the niobium silicide based composites, having a eutectic of Nb solid solution (Nbss) and (Nb,Mo)5Si3, and either Nbss or (Nb,Mo)5Si3 as the primary phase in the hypoeutectic or hypereutectic compositions, respectively, have been processed by arc melting. The increase in fracture toughness with respect to that of MoSi2 is modest in the MoSi2-SiC composites, and more significant in the multiphase Mo-Mo3Si-Mo5SiB2 and Nbss-(Nb,Mo)5Si3 based in-situ composites with ductile reinforcements. The ductile phase, either Mo or Nbss aids in toughening chiefly through crack arrest and bridging, and undergoes plastic yielding under constraint during deformation, leading to a higher energy of fracture. In the MoSi2 and MoSi2-SiC composites, the matrix grain size has a significant role in high temperature strength retention and strain hardening behaviour. In the ductile phase reinforced composites, the hard silicide-based intermetallic phases contribute to elevated temperature strength, while the constrained plastic deformation of the -Mo or Nbss is responsible for much higher rate of strain hardening than in the MoSi2 and MoSi2-SiC composites.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-192

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Mitra: Inter. Mater. Rev. Vol. 51(1) (2006), p.13.

Google Scholar

[2] J. J. Petrovic and A. K. Vasudevan: Mater. Sci. Eng. A. Vol. 261 (1999), p.1.

Google Scholar

[3] R. K. Wade and J. J. Petrovic: J. Am. Ceram. Soc. Vol. 75(11) (1992), p.3160.

Google Scholar

[4] F. D. Gac and J. J. Petrovic: J. Am. Ceram. Soc. Vol. 68(8) (1985), p. C200.

Google Scholar

[5] M. G. Mendirata, J. J. Lewandowski and D. M. Dimiduk: Metall. Trans. A. Vol. 22 (1991), p.1573.

Google Scholar

[6] R. K. Nekkanti and D. M. Dimiduk: Mater. Res. Soc. Symp. Proc. Vol. 194 (1990), p.175.

Google Scholar

[7] D. H. Carter, J. J. Petrovic, R. E. Honnell and W. S. Gibbs: Ceram. Eng. Sci. Proc. Vol. 10(910) (1989), p.1121.

Google Scholar

[8] C. H. Henager, Jr, J. L. Brimhall and J. P. Hirth: Mater. Sci. Eng. A. Vol. 155 (1992), p.109.

Google Scholar

[9] R. Mitra, Y. R. Mahajan, N. Eswara Prasad and W.A. Chiou: Mater. Sci. Eng. A. Vol. 125 (1997), p.105.

Google Scholar

[10] R. Mitra, V. V. Rama Rao and A. Venugopal Rao: Intermetallics Vol. 7 (1999), p.213.

Google Scholar

[11] T. C. Lu, A. G. Evans, R. J. Hecht and R. Mehrabian: Acta Mater., Vol. 39(8) (1991), p.1853.

Google Scholar

[12] L. Xiao and R. Abbaschian: Mater. Sci. Eng. A, Vol. 155 (1992), p.135.

Google Scholar

[13] R. G. Castro, R. W. Smith, A. D. Rollett and P. W. Stanek: Scripta Metall. Mater., Vol. 26 (1992), p.207.

Google Scholar

[14] D. E. Alman and N. S. Stoloff, in: Fatigue and fracture of ordered intermetallic materials: I, edited by W. O. Soboyejo, T. S. Srivatsan and D. L. Davidson, TMS, Warrendale, PA (1994), p.13.

Google Scholar

[15] K. Badrinarayana, A. L. McKelvey, K. T. Venkateswara Rao and R. O. Ritchie: Metall. Mater. Trans. A, 27A (1996), p.3781.

Google Scholar

[15] S. Maloy, A. H. Heuer, J. Lewandowski and J. J. Petrovic: J. Am. Ceram. Soc., Vol. 74(10) (1991), p.2704.

Google Scholar

[16] R. M. Aikin, Jr: Mater. Sci. Eng. A, Vol. 155 (1992), p.121.

Google Scholar

[17] R. Mitra, N. Eswara Prasad, Sweety Kumari and A. Venugopal Rao: Metall. Mater. Trans., Vol. 34A (2003), p.1069.

Google Scholar

[18] T. G. Nieh, J. G. Wang and C. T. Liu: Intermetallics, Vol. 9 (2001), p.73.

Google Scholar

[19] J. H. Schneibel: Intermetallics: Vol. 11 (2003), p.625.

Google Scholar

[20] J. -H. Kim, T. Tabaru, H. Hirai, A. Kitahara and S. Hanada: Scripta Mater., Vol. 48 (2003), p.1439.

Google Scholar

[21] J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno and S. Hanada: Mater. Sci. Eng. A, Vol. 364 (2004), p.151.

Google Scholar

[22] C.L. Ma, J.G. Li, Y. Tan, R. Tanaka, S. Hanada: Mater. Sci. Eng. A, Vol. 386 (2004), p.375.

Google Scholar

[23] D. M. Dimiduk and J. J. Perepezko: MRS Bull., Vol. 28(9) (2003), p.639.

Google Scholar

[24] B. P. Bewlay, M. R. Jackson and P. R. Subramanian: JOM, Vol. 51 (1999), p.32.

Google Scholar

[25] J. -C. Zhao, B. P. Bewlay, M. R. Jackson and L. A. Peluso, in: Proc. of the 2001 Intermetallics Symposium on Structural intermetallics, edited by K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas and J. D. Whittenberger, TMS, Warrendale, PA (2001).

Google Scholar

[26] M.P. Bewlay: in Intermetallic Compounds, Principles and Practice, Vol. 3, edited by J.H. Westbrook and R.H. Fleischer, John Wiley and Sons, Chichester, U.K., Chapter 5 (2002).

Google Scholar

[27] B. P. Bewlay, M. R. Jackson, J. -C. Zhao, P. R. Subramanian, M. G. Mendiratta, and J. J. Lewandowski: MRS Bull. Vol. 28(9) (2003), p.646.

DOI: 10.1557/mrs2003.192

Google Scholar

[28] M. K. Meyer and M. Akinc: J. Am. Ceram. Soc., Vol. 79(4) (1996), p.938.

Google Scholar

[29] J. D. Rigney and J. J. Lewandowski: Metall. Mater. Trans. A. Vol. 27A (1996), p.3292.

Google Scholar

[30] M. F. Ashby, F. J. Blunt, and M. Bannister: Acta Metall. Vol. 7 (1989), 1847.

Google Scholar

[31] J. J. Kruzic, J. H. Schneibel, and R. O. Ritchie: Scripta Mater. Vol. 50 (2004), p.459.

Google Scholar

[32] M. G. Mendiratta and D. M. Dimiduk: Metall. Trans. A. Vol. 24A (1993), p.501.

Google Scholar

[33] R. Mitra, A.K. Srivastava, N. Eswara Prasad, and Sweety Kumari: Intermetallics, Vol. 14(12) (2006), p.1461.

Google Scholar

[34] K. Chattopadhyay, G. Balachandran, R. Mitra, and K.K. Ray: Intermetallics, Vol. 14(12) (2006), p.1452.

Google Scholar

[35] R. Mitra and V. V. Rama Rao, Mater. Sci. Eng. A, Vol. 260 (1999), p.146.

Google Scholar

[36] Sharma Paswan, R. Mitra and S.K. Roy, Intermetallics, Vol. 15 (2007), p.1217.

Google Scholar

[37] K. Chattopadhyay, R. Mitra, and K.K. Ray, Metall. Mater. Trans., A., in press, doi: 10. 1007/s11661-007-9398-9 (2008).

Google Scholar

[38] R. Mitra, N. Eswara Prasad, A. Venugopal Rao and Y. R. Mahajan: in Structural Intermetallics 1997, edited by M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner and M. Yamaguchi, p.959, TMS (1997).

Google Scholar

[39] ASTM C-1161-94, Annual book of ASTM standards, p.309 (American Society for Testing and Materials, Philadelphia, PA, USA 1996).

Google Scholar

[40] ASTM E-399-83, Annual Book of ASTM Standards, Section 3, p.500 (American Society for Testing and Materials, Philadelphia, PA, USA 1990).

Google Scholar

[41] A.G. Evans and E.A. Charles: J. Am. Ceram. Soc. Vol. 59 (7-8) (1976), p.371.

Google Scholar

[42] K. Niihara, R. Morena, and D.P.H. Hassleman, in: Fracture Mechanics of Ceramics, 5, edited by R.C. Bradt, D.P.H. Hassleman, and F.F. Lange, Plenum Press, New York, NY, p.97 (1983).

Google Scholar

[43] K. Niihara, R. Morena, and D.P.H. Hassleman: J. Mater. Sci. Lett. Vol. 1 (1982), p.13.

Google Scholar

[44] J. H. Schneibel, M. J. Kramer, O. Unal and R. N. Wright: Intermetallics, Vol. 9 (2001), p.25.

Google Scholar

[45] A. Buch: Pure metals properties: a scientific technical handbook, p.176 (ASM International, Materials Park, OH 44073, USA 1999).

Google Scholar

[46] Information on: http: /en. wikipedia. org/wiki/Niobium.

Google Scholar

[47] R. Morena, K. Niihara, D.P.H. Hasselman: J. Am. Ceram. Soc. Vol. 66(10) (1983), p.673.

Google Scholar

[48] I. Rosales and J. H. Schneibel: Intermetallics Vol. 8 (2000), p.885.

Google Scholar

[49] K. Ihara, K. Ito, K. Tanaka and M. Yamaguchi: Mater. Sci. Eng. A. Vol. 329 (2002), p.232.

Google Scholar

[50] R. M. Aikin, Jr.: Scripta Metall. Mater. Vol. 26 (1992), p.1025.

Google Scholar

[51] K. Sadananda, C. R. Feng, R. Mitra and S. C. Deevi: Mater. Sci. Eng. A. Vol. 261 (1999) p.223.

Google Scholar

[52] J.H. Hollomon: Trans. AIME, 1945, Vol. 162 (1945), p.268.

Google Scholar

[53] P. Ludwik: Elemente der Technologischen Mechanik, p.32 (Springer, Berlin1909).

Google Scholar