Effect of Ductile and Brittle Phases on Deformation and Fracture Behaviour of Molybdenum and Niobium Silicide Based Composites

Abstract:

Article Preview

A comparative study on the microstructure-mechanical property relationships in the molybdenum and niobium silicide based composites has been carried out with emphasis on the role of the ductile and brittle phase constituents at ambient and elevated temperatures. The MoSi2, MoSi2-20 vol.% SiC and -Mo-Mo3Si-Mo5SiB2 composites have been prepared by powder metallurgy processing. Furthermore, the niobium silicide based composites, having a eutectic of Nb solid solution (Nbss) and (Nb,Mo)5Si3, and either Nbss or (Nb,Mo)5Si3 as the primary phase in the hypoeutectic or hypereutectic compositions, respectively, have been processed by arc melting. The increase in fracture toughness with respect to that of MoSi2 is modest in the MoSi2-SiC composites, and more significant in the multiphase Mo-Mo3Si-Mo5SiB2 and Nbss-(Nb,Mo)5Si3 based in-situ composites with ductile reinforcements. The ductile phase, either Mo or Nbss aids in toughening chiefly through crack arrest and bridging, and undergoes plastic yielding under constraint during deformation, leading to a higher energy of fracture. In the MoSi2 and MoSi2-SiC composites, the matrix grain size has a significant role in high temperature strength retention and strain hardening behaviour. In the ductile phase reinforced composites, the hard silicide-based intermetallic phases contribute to elevated temperature strength, while the constrained plastic deformation of the -Mo or Nbss is responsible for much higher rate of strain hardening than in the MoSi2 and MoSi2-SiC composites.

Info:

Periodical:

Edited by:

Yashwant Mahajan & J. A. Sekhar

Pages:

179-192

Citation:

R. Mitra et al., "Effect of Ductile and Brittle Phases on Deformation and Fracture Behaviour of Molybdenum and Niobium Silicide Based Composites", Key Engineering Materials, Vol. 395, pp. 179-192, 2009

Online since:

October 2008

Export:

Price:

$38.00

[1] R. Mitra: Inter. Mater. Rev. Vol. 51(1) (2006), p.13.

[2] J. J. Petrovic and A. K. Vasudevan: Mater. Sci. Eng. A. Vol. 261 (1999), p.1.

[3] R. K. Wade and J. J. Petrovic: J. Am. Ceram. Soc. Vol. 75(11) (1992), p.3160.

[4] F. D. Gac and J. J. Petrovic: J. Am. Ceram. Soc. Vol. 68(8) (1985), p. C200.

[5] M. G. Mendirata, J. J. Lewandowski and D. M. Dimiduk: Metall. Trans. A. Vol. 22 (1991), p.1573.

[6] R. K. Nekkanti and D. M. Dimiduk: Mater. Res. Soc. Symp. Proc. Vol. 194 (1990), p.175.

[7] D. H. Carter, J. J. Petrovic, R. E. Honnell and W. S. Gibbs: Ceram. Eng. Sci. Proc. Vol. 10(910) (1989), p.1121.

[8] C. H. Henager, Jr, J. L. Brimhall and J. P. Hirth: Mater. Sci. Eng. A. Vol. 155 (1992), p.109.

[9] R. Mitra, Y. R. Mahajan, N. Eswara Prasad and W.A. Chiou: Mater. Sci. Eng. A. Vol. 125 (1997), p.105.

[10] R. Mitra, V. V. Rama Rao and A. Venugopal Rao: Intermetallics Vol. 7 (1999), p.213.

[11] T. C. Lu, A. G. Evans, R. J. Hecht and R. Mehrabian: Acta Mater., Vol. 39(8) (1991), p.1853.

[12] L. Xiao and R. Abbaschian: Mater. Sci. Eng. A, Vol. 155 (1992), p.135.

[13] R. G. Castro, R. W. Smith, A. D. Rollett and P. W. Stanek: Scripta Metall. Mater., Vol. 26 (1992), p.207.

[14] D. E. Alman and N. S. Stoloff, in: Fatigue and fracture of ordered intermetallic materials: I, edited by W. O. Soboyejo, T. S. Srivatsan and D. L. Davidson, TMS, Warrendale, PA (1994), p.13.

[15] K. Badrinarayana, A. L. McKelvey, K. T. Venkateswara Rao and R. O. Ritchie: Metall. Mater. Trans. A, 27A (1996), p.3781.

[15] S. Maloy, A. H. Heuer, J. Lewandowski and J. J. Petrovic: J. Am. Ceram. Soc., Vol. 74(10) (1991), p.2704.

[16] R. M. Aikin, Jr: Mater. Sci. Eng. A, Vol. 155 (1992), p.121.

[17] R. Mitra, N. Eswara Prasad, Sweety Kumari and A. Venugopal Rao: Metall. Mater. Trans., Vol. 34A (2003), p.1069.

[18] T. G. Nieh, J. G. Wang and C. T. Liu: Intermetallics, Vol. 9 (2001), p.73.

[19] J. H. Schneibel: Intermetallics: Vol. 11 (2003), p.625.

[20] J. -H. Kim, T. Tabaru, H. Hirai, A. Kitahara and S. Hanada: Scripta Mater., Vol. 48 (2003), p.1439.

[21] J. Sha, H. Hirai, T. Tabaru, A. Kitahara, H. Ueno and S. Hanada: Mater. Sci. Eng. A, Vol. 364 (2004), p.151.

[22] C.L. Ma, J.G. Li, Y. Tan, R. Tanaka, S. Hanada: Mater. Sci. Eng. A, Vol. 386 (2004), p.375.

[23] D. M. Dimiduk and J. J. Perepezko: MRS Bull., Vol. 28(9) (2003), p.639.

[24] B. P. Bewlay, M. R. Jackson and P. R. Subramanian: JOM, Vol. 51 (1999), p.32.

[25] J. -C. Zhao, B. P. Bewlay, M. R. Jackson and L. A. Peluso, in: Proc. of the 2001 Intermetallics Symposium on Structural intermetallics, edited by K. J. Hemker, D. M. Dimiduk, H. Clemens, R. Darolia, H. Inui, J. M. Larsen, V. K. Sikka, M. Thomas and J. D. Whittenberger, TMS, Warrendale, PA (2001).

[26] M.P. Bewlay: in Intermetallic Compounds, Principles and Practice, Vol. 3, edited by J.H. Westbrook and R.H. Fleischer, John Wiley and Sons, Chichester, U.K., Chapter 5 (2002).

[27] B. P. Bewlay, M. R. Jackson, J. -C. Zhao, P. R. Subramanian, M. G. Mendiratta, and J. J. Lewandowski: MRS Bull. Vol. 28(9) (2003), p.646.

DOI: https://doi.org/10.1557/mrs2003.192

[28] M. K. Meyer and M. Akinc: J. Am. Ceram. Soc., Vol. 79(4) (1996), p.938.

[29] J. D. Rigney and J. J. Lewandowski: Metall. Mater. Trans. A. Vol. 27A (1996), p.3292.

[30] M. F. Ashby, F. J. Blunt, and M. Bannister: Acta Metall. Vol. 7 (1989), 1847.

[31] J. J. Kruzic, J. H. Schneibel, and R. O. Ritchie: Scripta Mater. Vol. 50 (2004), p.459.

[32] M. G. Mendiratta and D. M. Dimiduk: Metall. Trans. A. Vol. 24A (1993), p.501.

[33] R. Mitra, A.K. Srivastava, N. Eswara Prasad, and Sweety Kumari: Intermetallics, Vol. 14(12) (2006), p.1461.

DOI: https://doi.org/10.1016/j.intermet.2006.01.057

[34] K. Chattopadhyay, G. Balachandran, R. Mitra, and K.K. Ray: Intermetallics, Vol. 14(12) (2006), p.1452.

[35] R. Mitra and V. V. Rama Rao, Mater. Sci. Eng. A, Vol. 260 (1999), p.146.

[36] Sharma Paswan, R. Mitra and S.K. Roy, Intermetallics, Vol. 15 (2007), p.1217.

[37] K. Chattopadhyay, R. Mitra, and K.K. Ray, Metall. Mater. Trans., A., in press, doi: 10. 1007/s11661-007-9398-9 (2008).

[38] R. Mitra, N. Eswara Prasad, A. Venugopal Rao and Y. R. Mahajan: in Structural Intermetallics 1997, edited by M. V. Nathal, R. Darolia, C. T. Liu, P. L. Martin, D. B. Miracle, R. Wagner and M. Yamaguchi, p.959, TMS (1997).

[39] ASTM C-1161-94, Annual book of ASTM standards, p.309 (American Society for Testing and Materials, Philadelphia, PA, USA 1996).

[40] ASTM E-399-83, Annual Book of ASTM Standards, Section 3, p.500 (American Society for Testing and Materials, Philadelphia, PA, USA 1990).

[41] A.G. Evans and E.A. Charles: J. Am. Ceram. Soc. Vol. 59 (7-8) (1976), p.371.

[42] K. Niihara, R. Morena, and D.P.H. Hassleman, in: Fracture Mechanics of Ceramics, 5, edited by R.C. Bradt, D.P.H. Hassleman, and F.F. Lange, Plenum Press, New York, NY, p.97 (1983).

[43] K. Niihara, R. Morena, and D.P.H. Hassleman: J. Mater. Sci. Lett. Vol. 1 (1982), p.13.

[44] J. H. Schneibel, M. J. Kramer, O. Unal and R. N. Wright: Intermetallics, Vol. 9 (2001), p.25.

[45] A. Buch: Pure metals properties: a scientific technical handbook, p.176 (ASM International, Materials Park, OH 44073, USA 1999).

[46] Information on: http: /en. wikipedia. org/wiki/Niobium.

[47] R. Morena, K. Niihara, D.P.H. Hasselman: J. Am. Ceram. Soc. Vol. 66(10) (1983), p.673.

[48] I. Rosales and J. H. Schneibel: Intermetallics Vol. 8 (2000), p.885.

[49] K. Ihara, K. Ito, K. Tanaka and M. Yamaguchi: Mater. Sci. Eng. A. Vol. 329 (2002), p.232.

[50] R. M. Aikin, Jr.: Scripta Metall. Mater. Vol. 26 (1992), p.1025.

[51] K. Sadananda, C. R. Feng, R. Mitra and S. C. Deevi: Mater. Sci. Eng. A. Vol. 261 (1999) p.223.

[52] J.H. Hollomon: Trans. AIME, 1945, Vol. 162 (1945), p.268.

[53] P. Ludwik: Elemente der Technologischen Mechanik, p.32 (Springer, Berlin1909).

Fetching data from Crossref.
This may take some time to load.